Skip to main content

An Analysis of the Intracellular Signal Transduction of Peripheral Blood Leukocytes in Animal Models of Diabetes Using Flow Cytometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1916))

Abstract

Various complications of diabetes are induced by the augmentation of chronic inflammation and attenuation of immunity. Leukocytes, which play major roles in inflammation and immune responses, are affected by the glycemic status and blood insulin level. In this chapter, we explain a method for analyzing the signal transduction pathway of leukocytes in peripheral blood. This method using flow cytometry can analyze a small amount of blood (50–100 μL/sample) without leukocyte purification. Thus, this procedure is useful for experiments using small-animal models of diabetes, such as mice and rats. We also introduce a new method for classifying intracellular signal transduction by combining the dispersibility level and the activation level of the signaling molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115:1111–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wakabayashi I, Nakano T, Takahashi Y (2010) Enhancement of interleukin-1beta-induced iNOS expression in cultured vascular smooth muscle cells of Goto-Kakizaki diabetes rats. Eur J Pharmacol 629:1–6

    Article  CAS  PubMed  Google Scholar 

  3. Telieps T, Kohler M, Treise I, Foertsch K, Adler T, Busch DH et al (2016) Longitudinal frequencies of blood leukocyte subpopulations differ between NOD and NOR mice but do not predict diabetes in NOD mice. J Diabetes Res 2016:4208156. https://doi.org/10.1155/2016/4208156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Apostolopoulou M, Menart-Houtermans B, Ruetter R, Nowotny B, Gehrmann U, Markgraf D et al (2018) Characterization of circulating leukocytes and correlation of leukocyte subsets with metabolic parameters 1 and 5 years after diabetes diagnosis. Acta Diabetol 55(7):723–731

    Article  CAS  PubMed  Google Scholar 

  5. Ballak DB, Stienstra R, Tack CJ, Dinarello CA, van Diepen JA (2015) IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance. Cytokine 75:280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buck MD, O'Sullivan D, Pearce EL (2015) T cell metabolism drives immunity. J Exp Med 212:1345–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stefano GB, Challenger S, Kream RM (2016) Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr 55:2339–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takeda Y, Shimomura T, Asao H, Wakabayashi I (2017) Relationship between immunological abnormalities in rat models of diabetes mellitus and the amplification circuits for diabetes. J Diabetes Res 2017:4275851. https://doi.org/10.1155/2017/4275851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dasu MR, Devaraj S, Zhao L, Hwang DH, Jialal I (2008) High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57:3090–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S et al (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:1279–1285

    Article  CAS  PubMed  Google Scholar 

  11. Trepanowski JF, Mey J, Varady KA (2015) Fetuin-A: a novel link between obesity and related complications. Int J Obes 39:734–741

    Article  CAS  Google Scholar 

  12. Perez OD, Nolan GP (2002) Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat Biotechnol 20:155–162

    Article  CAS  PubMed  Google Scholar 

  13. Krutzik PO, Irish JM, Nolan GP, Perez OD (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110:206–221

    Article  CAS  PubMed  Google Scholar 

  14. Takeda Y, Nara H, Asao H (2017) Analysis of signal transducers using flow cytometry is useful for detection of contractive and fluctuating signals. Bulletin of the Yamagata University Medical science: Yamagata Medical Journal 35:21–32

    Google Scholar 

  15. Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226

    Article  CAS  PubMed  Google Scholar 

  16. Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward WK (2004) Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp Med 54:252–257

    CAS  PubMed  Google Scholar 

  17. Deeds MC, Anderson JM, Armstrong AS, Gastineau DA, Hiddinga HJ, Jahangir A et al (2011) Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim 45:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    Article  CAS  PubMed  Google Scholar 

  19. Slieker LJ, Roberts EF, Shaw WN, Johnson WT (1990) Effect of streptozocin-induced diabetes on insulin-receptor tyrosine kinase activity in obese Zucker rats. Diabetes 39:619–625

    Article  CAS  PubMed  Google Scholar 

  20. Levine JH, Lin Y, Elowitz MB (2013) Functional roles of pulsing in genetic circuits. Science 342:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Albeck JG, Mills GB, Brugge JS (2013) Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. Mol Cell 49:249–261

    Article  CAS  PubMed  Google Scholar 

  22. Takeda Y, Marumo M, Nara H, Feng ZG, Asao H, Wakabayashi I et al (2016) Selective induction of anti-inflammatory monocyte-platelet aggregates in a model of pulsatile blood flow at low shear rates. Platelets 27:583–592

    Article  CAS  PubMed  Google Scholar 

  23. Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JR, Hearne CM et al (1991) Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351:542–547

    Article  CAS  PubMed  Google Scholar 

  24. Delovitch TL, Singh B (1997) The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7:727–738

    Article  CAS  PubMed  Google Scholar 

  25. Lyons PA, Armitage N, Lord CJ, Phillips MS, Todd JA, Peterson LB et al (2001) Mapping by genetic interaction: high-resolution congenic mapping of the type 1 diabetes loci Idd10 and Idd18 in the NOD mouse. Diabetes 50:2633–2637

    Article  CAS  PubMed  Google Scholar 

  26. Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV et al (2006) The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55:3335–3343

    Article  CAS  PubMed  Google Scholar 

  27. Crisa L, Greiner DL, Mordes JP, MacDonald RG, Handler ES, Czech MP et al (1990) Biochemical studies of RT6 alloantigensin BB/Wor and normal rats. Evidence for intact unexpressed RT6a structural gene in diabetes-prone BB rats. Diabetes 39:1279–1288

    Article  CAS  PubMed  Google Scholar 

  28. Wallis RH, Wang K, Marandi L, Hsieh E, Ning T, Chao GY et al (2009) Type 1 diabetes in the BB rat: a polygenic disease. Diabetes 58:1007–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruth MR, Taylor CG, Zahradka P, Field CJ (2008) Abnormal immune responses in fa/fa Zucker rats and effects of feeding conjugated linoleic acid. Obesity (Silver Spring) 16:1770–1779

    Article  CAS  Google Scholar 

  30. Hirashima T, Kawano K, Mori S, Natori T (1996) A diabetogenic gene, ODB2, identified on chromosome 14 of the OLETF rat and its synergistic action with ODB1. Biochem Biophys Res Commun 224:420–425

    Article  CAS  PubMed  Google Scholar 

  31. Hida K, Wada J, Zhang H, Hiragushi K, Tsuchiyama Y, Shikata K et al (2000) Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats. J Lipid Res 41:1615–1622

    CAS  PubMed  Google Scholar 

  32. Hempe J, Elvert R, Schmidts HL, Kramer W, Herling AW (2012) Appropriateness of the Zucker Diabetic Fatty rat as a model for diabetic microvascular late complications. Lab Anim 46:32–39

    Article  CAS  PubMed  Google Scholar 

  33. Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75

    Article  CAS  PubMed  Google Scholar 

  34. Shinohara M, Masuyama T, Shoda T, Takahashi T, Katsuda Y, Komeda K et al (2000) A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res 1:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fuse M, Yokoi N, Shinohara M, Masuyama T, Kitazawa R, Kitazawa S et al (2008) Identification of a major locus for islet inflammation and fibrosis in the spontaneously diabetic Torii rat. Physiol Genomics 35:96–105

    Article  CAS  PubMed  Google Scholar 

  36. Goto Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119:85–90

    Article  CAS  PubMed  Google Scholar 

  37. Rosengren AH, Jokubka R, Tojjar D, Granhall C, Hansson O, Li DQ et al (2010) Overexpression of alpha2A-adrenergic receptors contributes to type 2 diabetes. Science 327:217–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science Grant, No. 22590560, No. 80250744, No. 16K16294, and No. 17K11220001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takeda, Y., Asao, H., Wakabayashi, I. (2019). An Analysis of the Intracellular Signal Transduction of Peripheral Blood Leukocytes in Animal Models of Diabetes Using Flow Cytometry. In: Guest, P. (eds) Pre-Clinical Models. Methods in Molecular Biology, vol 1916. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8994-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8994-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8993-5

  • Online ISBN: 978-1-4939-8994-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics