Skip to main content

Experimental Model of HindLimb Suspension-Induced Skeletal Muscle Atrophy in Rodents

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1916))

Abstract

Due to the difficulty of performing research protocols that reproduce human skeletal muscle disuse conditions, an experimental animal model of “hindlimb suspension” (or hindlimb unloading) was developed. This method was created in the 1970s and utilizes rats and mice to mimic space flight and bed rest in humans. It provides an alternative to investigate mechanisms associated with skeletal muscle mass loss and interventions designed to attenuate atrophy induced by hindlimb unloading. The mentioned protocol also allows investigating quality of bones and changes in several physiological parameters such as blood pressure, heart rate, plasma or tissue lipid composition, and glycemia.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rudrappa SS, Wilkinson DJ, Greenhaff PL, Smith K, Idris I, Atherton PJ (2016) Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown, and insulin resistance-A qualitative review. Front Physiol 7:361. https://doi.org/10.3389/fphys.2016.00361

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dirks ML, Backx EM, Wall BT, Verdijk LB, van Loon LJ (2016) May bed rest cause greater muscle loss than limb immobilization? Acta Physiol (Oxf) 218:10–12

    CAS  Google Scholar 

  3. Backx EMP, Horstman AMH, Marzuca-Nassr GN, van Kranenburg J, Smeets JS, Fuchs CJ et al (2018) Leucine supplementation does not attenuate skeletal muscle loss during leg immobilization in healthy, Young Men Nutrients 10(5). pii: E635. doi: https://doi.org/10.3390/nu10050635

  4. Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287(4):C834–C843

    Article  CAS  Google Scholar 

  5. Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170

    CAS  Google Scholar 

  6. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39

    Article  CAS  Google Scholar 

  7. Atherton PJ, Greenhaff PL, Phillips SM, Bodine SC, Adams CM, Lang CH (2016) Control of skeletal muscle atrophy in response to disuse: clinical/pre-clinical contentions and fallacies of evidence. Am J Physiol Endocrinol Metab 311(3):E594–E604

    Article  Google Scholar 

  8. Dirks ML, Wall BT, van de Valk B, Holloway TM, Holloway GP, Chabowski A et al (2016) One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation. Diabetes 65(10):2862–2875

    Article  CAS  Google Scholar 

  9. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol (1985) 102(6):2389–2397

    Article  CAS  Google Scholar 

  10. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985) 92(4):1367–1377

    Article  Google Scholar 

  11. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708

    Article  CAS  Google Scholar 

  12. Marzuca-Nassr GN, Murata GM, Martins AR, Vitzel KF, Crisma AR, Torres RP et al (2017) Balanced Diet-Fed Fat-1 transgenic mice exhibit lower hindlimb suspension-induced soleus muscle atrophy. Nutrients 9(10). pii: E1100. doi: https://doi.org/10.3390/nu9101100

  13. Marzuca-Nassr GN, Droguett-Cervela RA, Córdova-Sáez MP, Ibarra-Fuentealba IA, Donoso Torres WK, López-Suárez A et al (2017) Acute electrical stimulation modifies cross-sectional area and desmin protein in the skeletal muscle of old rats submitted to hindlimb suspension. Indian J Physiol Pharmacol 61(3):219–231

    Google Scholar 

  14. Marzuca-Nassr GN, Vitzel KF, De Sousa LG, Murata GM, Crisma AR, Rodrigues Junior CF et al (2016) Effects of high EPA and high DHA fish oils on changes in signaling associated with protein metabolism induced by hindlimb suspension in rats. Physiol Rep 4(18). pii: e12958. doi: https://doi.org/10.14814/phy2.12958

  15. Tsvirkun D, Bourreau J, Mieuset A, Garo F, Vinogradova O, Larina I et al (2012) Contribution of social isolation, restraint, and hindlimb unloading to changes in hemodynamic parameters and motion activity in rats. PLoS One 7(7):e39923. https://doi.org/10.1371/journal.pone.0039923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lloyd SA, Lang CH, Zhang Y, Paul EM, Laufenberg LJ, Lewis GS et al (2014) Interdependence of muscle atrophy and bone loss induced by mechanical unloading. J Bone Miner Res 29(5):1118–1130

    Article  CAS  Google Scholar 

  17. Bodine SC (2013) Disuse-induced muscle wasting. Int J Biochem Cell Biol 45(10):2200–2208

    Article  CAS  Google Scholar 

  18. Thomason DB, Booth FW (1990) Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol (1985) 68(1):1–12

    Article  CAS  Google Scholar 

  19. Fortes MAS, Scervino MVM, Marzuca-Nassr GN, Vitzel KF, da Justa Pinheiro CH, Curi R (2017) Hypertrophy stimulation at the onset of type I diabetes maintains the soleus but not the EDL muscle mass in wistar rats. Front Physiol 8:830. https://doi.org/10.3389/fphys.2017.00830

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martins AR, Crisma AR, Masi LN, Amaral CL, Marzuca-Nassr GN, Bomfim LHM et al (2018) Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. J Nutr Biochem 55:76–88

    Article  CAS  Google Scholar 

  21. Coutinho EL, Gomes AR, Franca CN, Salvini TF (2002) A new model for the immobilization of the rat hind limb. Braz J Med Biol Res 35(11):1329–1332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to José Roberto Mendonça for the excellent technical assistance. This research was supported by Becas Chile (CONICYT), Universidad de La Frontera, FAPESP, CNPq, CAPES, and Dean’s Office for Post-graduate Studies and Research of the Cruzeiro do Sul University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Nasri Marzuca-Nassr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marzuca-Nassr, G.N., Vitzel, K.F., Murata, G.M., Márquez, J.L., Curi, R. (2019). Experimental Model of HindLimb Suspension-Induced Skeletal Muscle Atrophy in Rodents. In: Guest, P. (eds) Pre-Clinical Models. Methods in Molecular Biology, vol 1916. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8994-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8994-2_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8993-5

  • Online ISBN: 978-1-4939-8994-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics