Skip to main content

Creating Large Chromosomal Deletions in Rice Using CRISPR/Cas9

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1917))

Abstract

Engineered CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9) is an efficient and the most popularly used tool for genome engineering in eukaryotic organisms including plants, especially in crop plants. This system has been effectively used to introduce mutations in multiple genes simultaneously, create conditional alleles, and generate endogenously tagged proteins. CRISPR/Cas9 hence presents great value in basic and applied research for improving the performance of crop plants in various aspects such as increasing grain yields, improving nutritional content, and better combating biotic and abiotic stresses. Besides above applications, CRISPR/Cas9 system has been shown to be very effective in creating large chromosomal deletions in plants, which is useful for genetic analysis of chromosomal fragments, functional study of gene clusters in biological processes, and so on. Here, we present a protocol of creating large chromosomal deletions in rice using CRISPR/Cas9 system, including detailed information about single-guide RNA design, vector construction, plant transformation, and large deletion screening processes in rice.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9

DSB:

Double-stranded DNA break

HDR:

Homology-directed recombination

hptII :

Hygromycin phosphotransferase gene for hygromycin B resistance

MCS:

Multiple cloning sites

NHEJ:

Nonhomologous end joining

References

  1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  3. Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14(2):483–495. https://doi.org/10.1111/pbi.12448

    Article  CAS  PubMed  Google Scholar 

  4. Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8. https://doi.org/10.1016/j.pbi.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  5. Tsai SQ, Joung JK (2016) Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat Rev Genet 17(5):300–312. https://doi.org/10.1038/nrg.2016.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949. https://doi.org/10.1016/j.cell.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baltes NJ, Voytas DF (2015) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33(2):120–131. https://doi.org/10.1016/j.tibtech.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  9. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42(17):10903–10914. https://doi.org/10.1093/nar/gku806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kapusi E, Corcuera-Gomez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in Barley. Front Plant Sci 8:540. https://doi.org/10.3389/fpls.2017.00540

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brazelton VA, Zarecor S, Wright DA, Wang Y, Liu J, Chen K, Yang B, Lawrence-Dill CJ (2015) A quick guide to CRISPR sgRNA design tools. GM Crops Food 6(4):266–276. https://doi.org/10.1080/21645698.2015.1137690

    Article  PubMed  Google Scholar 

  12. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  CAS  PubMed  Google Scholar 

  13. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding support from the National Institute of Food and Agriculture of the US Department of Agriculture (2014-67013-21720 to BY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, R., Char, S.N., Yang, B. (2019). Creating Large Chromosomal Deletions in Rice Using CRISPR/Cas9. In: Qi, Y. (eds) Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology, vol 1917. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8991-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8991-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8990-4

  • Online ISBN: 978-1-4939-8991-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics