Skip to main content
Book cover

Calpain pp 163–185Cite as

Production and Purification of Recombinant Calpastatin

  • Protocol
  • First Online:
  • 772 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1915))

Abstract

The production of recombinant calpastatin in E. coli has become an efficient tool to obtain discrete amounts of a specific calpastatin species that can be present concomitantly with other calpastatin fragments/forms in the same tissue or cell type in a given condition. Indeed, at present, it is still difficult to distinguish the various calpastatin species for several reasons among which: calpastatins differ only at the N-terminus, can undergo calpain-dependent cleavage generating discrete fragments, and show anomalous electrophoretic mobility. Another benefit of using recombinant calpastatin is that, as the wild-type forms, it is heat resistant and thus can be efficiently isolated taking advantage of a simple quick purification step. Finally, the lack of posttranslational modifications makes recombinant calpastatin species particularly suitable for studying in vitro the biochemical features of specific parts of the inhibitor that following controlled posttranslational modifications change their functional interaction with calpain. In this chapter, we describe, starting from the mRNA sequence, how to produce rat calpastatin Type I in E. coli. We use routinely the same method, with minor modifications, for the production of other calpastatin species deriving from different tissues or organisms and calpastatin constructs having only specific domains. The possibility to obtain large amounts of a single calpain inhibitor form is a great advantage for studying the calpain/calpastatin system in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Takano J, Watanabe M, Hitomi K, Maki M (2000) Four types of calpastatin isoforms with distinct amino-terminal sequences are specified by alternative first exons and differentially expressed in mouse tissues. J Biochem 128:83–92

    Article  CAS  Google Scholar 

  2. Parr T, Sensky PL, Bardsley RG, Buttery PJ (2001) Calpastatin expression in porcine cardiac and skeletal muscle and partial gene structure. Arch Biochem Biophys 395:1–13

    Article  CAS  Google Scholar 

  3. Lee WJ, Ma H, Takano E, Yang HQ, Hatanaka M, Maki M (1992) Molecular diversity in amino-terminal domains of human calpastatin by exon skipping. J Biol Chem 267:8437–8442

    CAS  PubMed  Google Scholar 

  4. De Tullio R, Sparatore B, Salamino F, Melloni E, Pontremoli S (1998) Rat brain contains multiple mRNAs for calpastatin. FEBS Lett 422:113–117

    Article  Google Scholar 

  5. Takano J, Kawamura T, Murase M, Hitomi K, Maki M (1999) Structure of mouse calpastatin isoforms: implications of species-common and species-specific alternative splicing. Biochem Biophys Res Commun 260:339–345

    Article  CAS  Google Scholar 

  6. De Tullio R, Averna M, Stifanese R, Parr T, Bardsley RG, Pontremoli S, Melloni E (2007) Multiple rat brain calpastatin forms are produced by distinct starting points and alternative splicing of the N-terminal exons. Arch Biochem Biophys 465:148–156

    Article  Google Scholar 

  7. De Tullio R, Averna M, Salamino F, Pontremoli S, Melloni E (2000) Differential degradation of calpastatin by mu- and m-calpain in Ca2+-enriched human neuroblastoma LAN-5 cells. FEBS Lett 475:17–21

    Article  Google Scholar 

  8. Averna M, De Tullio R, Passalacqua M, Salamino F, Pontremoli S, Melloni E (2001) Changes in intracellular calpastatin localization are mediated by reversible phosphorylation. Biochem J 354:25–30

    Article  CAS  Google Scholar 

  9. De Tullio R, Cantoni C, Broggio C, Prato C, Stifanese R, Averna M, Antolini R, Pontremoli S, Melloni E (2009) Involvement of exon 6-mediated calpastatin intracellular movements in the modulation of calpain activation. Biochim Biophys Acta 1790:182–187

    Article  Google Scholar 

  10. Geesink GH, Nonneman D, Koohmaraie M (1998) An improved purification protocol for heart and skeletal muscle calpastatin reveals two isoforms resulting from alternative splicing. Arch Biochem Biophys 356:19–24

    Article  CAS  Google Scholar 

  11. Parr T, Sensky MK, Bardsley RG, Buttery PJ (2000) Effects of epinephrine infusion on expression of calpastatin in porcine cardiac and skeletal muscle. Arch Biochem Biophys 374:299–305

    Article  CAS  Google Scholar 

  12. Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31:3688–3691

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the grant FRA2015 and FRA2016 from University of Genova to MA and RDT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta De Tullio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Tullio, R., Averna, M. (2019). Production and Purification of Recombinant Calpastatin. In: Messer, J. (eds) Calpain. Methods in Molecular Biology, vol 1915. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8988-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8988-1_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8987-4

  • Online ISBN: 978-1-4939-8988-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics