Skip to main content

Co-immunoprecipitation as a Useful Tool for Detection of G Protein-Coupled Receptor Oligomers

  • Protocol
  • First Online:
Co-Immunoprecipitation Methods for Brain Tissue

Part of the book series: Neuromethods ((NM,volume 144))

  • 808 Accesses

Abstract

Allosteric interactions between transmembrane G protein-coupled receptors (GPCRs) could lead to conformational changes and therefore oligomer function diversity increase. GPCR complexes are composed by homo- or heteroreceptors that can further assemble into receptor mosaic. These allosteric interactions could play a major role in brain regulation and plasticity. Alteration in GPCR neuromodulation may be involved in depression, schizophrenia, and addiction. Several studies reported that activation of the D4 dopaminergic receptor blocks many of the molecular, cellular, and behavioral effects produced by morphine. The existence of a MOR/D4R allosteric interaction through orthosteric agonist might lead to a secure therapeutic use of morphine. Here we describe the co-immunoprecipitation technique to study direct GPCR interaction in cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. https://doi.org/10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  2. Agnati LF, Fuxe K, Zoli M et al (1982) New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med Biol 60:183–190

    CAS  PubMed  Google Scholar 

  3. Fuxe K, Agnati LF, Benfenati F et al (1983) Evidence for the existence of receptor--receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm Suppl 18:165–179

    CAS  PubMed  Google Scholar 

  4. Fuxe K, Borroto-Escuela DO (2016) Heteroreceptor complexes and their allosteric receptor–receptor interactions as a novel biological principle for integration of communication in the CNS: targets for drug development. Neuropsychopharmacology 41:380–382. https://doi.org/10.1038/npp.2015.244

    Article  CAS  PubMed  Google Scholar 

  5. Han Y, Moreira IS, Urizar E et al (2009) Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. Nat Chem Biol 5:688–695. https://doi.org/10.1038/nchembio.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farran B (2017) An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol Res 117:303–327. https://doi.org/10.1016/j.phrs.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  7. Fuxe K, Dahlström AB, Jonsson G et al (2010) The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 90:82–100. https://doi.org/10.1016/j.pneurobio.2009.10.012

    Article  CAS  PubMed  Google Scholar 

  8. Borroto-Escuela DO, Carlsson J, Ambrogini P et al (2017) Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease. Front Cell Neurosci 11:1–20. https://doi.org/10.3389/fncel.2017.00037

    Article  CAS  Google Scholar 

  9. Rivera A, Gago B, Suárez-Boomgaard D et al (2017) Dopamine D4 receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: relevance for drug addiction. Addict Biol 22(5):1232–1245. https://doi.org/10.1111/adb.12407

    Article  CAS  PubMed  Google Scholar 

  10. Gago B, Fuxe K, Agnati L et al (2007) Dopamine D(4) receptor activation decreases the expression of mu-opioid receptors in the rat striatum. J Comp Neurol 502:358–366. https://doi.org/10.1002/cne.21327

    Article  CAS  PubMed  Google Scholar 

  11. Gago B, Suárez-Boomgaard D, Fuxe K et al (2011) Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation. Brain Res 1407:47–61. https://doi.org/10.1016/j.brainres.2011.06.046

    Article  CAS  PubMed  Google Scholar 

  12. Gago B, Fuxe K, Brené S et al (2013) Early modulation by the dopamine D4 receptor of morphine-induced changes in the opioid peptide systems in the rat caudate putamen. J Neurosci Res 91:1533–1540. https://doi.org/10.1002/jnr.23277

    Article  CAS  PubMed  Google Scholar 

  13. Suárez-Boomgaard D, Gago B, Valderrama-Carvajal A et al (2014) Dopamine D4 receptor counteracts morphine-induced changes in μ-opioid receptor signaling in the striosomes of the rat caudate putamen. Int J Mol Sci 15:1481–1498. https://doi.org/10.3390/ijms15011481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arvidsson U, Riedl M, Chakrabarti S et al (1995) Distribution and targeting of a μ-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 15:3328–3341

    Article  CAS  Google Scholar 

  15. Rivera A, Cuéllar B, Girón FJ et al (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80:219–229. https://doi.org/10.1046/j.0022-3042.2001.00702.x

    Article  CAS  PubMed  Google Scholar 

  16. Rivera A, Trías S, Peñafiel A et al (2003) Expression of D4 dopamine receptors in striatonigral and striatopallidal neurons in the rat striatum. Brain Res 989:35–41. https://doi.org/10.1016/S0006-8993(03)03328-6

    Article  CAS  PubMed  Google Scholar 

  17. Fuxe K, Marcellino D, Rivera A et al (2008) Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Res Rev 58:415–452. https://doi.org/10.1016/j.brainresrev.2007.11.007

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Shumilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shumilov, K., Valderrama-Carvajal, A., García-Bonilla, M., Rivera, A. (2019). Co-immunoprecipitation as a Useful Tool for Detection of G Protein-Coupled Receptor Oligomers. In: Odagaki, Y., Borroto-Escuela, D. (eds) Co-Immunoprecipitation Methods for Brain Tissue . Neuromethods, vol 144. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8985-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8985-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8984-3

  • Online ISBN: 978-1-4939-8985-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics