Skip to main content

Co-immunoprecipitation (Co-IP) of G Protein-Coupled Receptor (GPCR)-Receptor Tyrosine Kinase (RTK) Complexes from the Dorsal Hippocampus of the Rat Brain

  • Protocol
  • First Online:
Co-Immunoprecipitation Methods for Brain Tissue

Abstract

A large body of evidence indicates that G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs) can form heteroreceptor complexes. In these complexes, the signaling from each interacting protomer is modulated to produce an integrated and therefore novel response upon agonist(s) activation. In the GPCR-RTK heteroreceptor complexes, GPCRs can activate RTK in the absence of added growth factor through the use of RTK signaling molecules. This integrative phenomenon is reciprocal and can place also RTK signaling downstream of GPCR. The existence of either stable or transient GPCR-RTK homo- and heteroreceptor complexes with allosteric receptor-receptor interactions increases the diversity of receptor function including recognition, trafficking, and signaling. The isolation and characterization of GPCR-RTK heteroreceptor complexes are therefore important to understand these processes. Co-immunoprecipitation (Co-IP) is a straightforward technique to study in vivo GPCR-RTK interactions and can identify interacting proteins or heteroreceptor complexes present in cell extracts. Here, we present detailed protocol for Co-IP of GPCR-RTK heteroreceptor complexes from brain membrane preparations using as an example the study of A2AR-TrkB heteroreceptor complexes in the rat dorsal hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnati LF, Fuxe K, Zini I, Lenzi P, Hokfelt T (1980) Aspects on receptor regulation and isoreceptor identification. Med Biol 58(4):182–187

    CAS  PubMed  Google Scholar 

  2. Fuxe K, Agnati LF, Benfenati F, Cimmino M, Algeri S, Hokfelt T, Mutt V (1981) Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol Scand 113(4):567–569. https://doi.org/10.1111/j.1748-1716.1981.tb06942.x

    Article  CAS  PubMed  Google Scholar 

  3. Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K (2015) The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. Philos Trans R Soc Lond Ser B Biol Sci 370(1672):20140183. https://doi.org/10.1098/rstb.2014.0183

    Article  CAS  Google Scholar 

  4. Fuxe K, Agnati LF, Borroto-Escuela DO (2014) The impact of receptor-receptor interactions in heteroreceptor complexes on brain plasticity. Expert Rev Neurother 14(7):719–721. https://doi.org/10.1586/14737175.2014.922878

    Article  CAS  PubMed  Google Scholar 

  5. Fuxe K, Tarakanov A, Romero Fernandez W, Ferraro L, Tanganelli S, Filip M, Agnati LF, Garriga P, Diaz-Cabiale Z, Borroto-Escuela DO (2014) Diversity and bias through receptor-receptor interactions in GPCR heteroreceptor complexes. Focus on examples from dopamine D2 receptor heteromerization. Front Endocrinol 5:71. https://doi.org/10.3389/fendo.2014.00071

    Article  Google Scholar 

  6. Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Palkovits M, Tarakanov AO, Ciruela F, Agnati LF (2014) Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology 39(1):131–155. https://doi.org/10.1038/npp.2013.242

    Article  CAS  PubMed  Google Scholar 

  7. Borroto-Escuela DO, Brito I, Di Palma M, Jiménez-Beristain A, Narváez M, Corrales F, Pita-Rodríguez M, Sartini S, Ambrogini P, Lattanzi D, Cuppini R, Agnati LF, Fuxe K (2015) On the role of the balance of GPCR homo/heteroreceptor complexes in the brain. J Adv Neurosci Res 2(1):36–44. https://doi.org/10.15379/2409-3564.2015.02.01.5

    Article  Google Scholar 

  8. Borroto-Escuela DO, Tarakanov AO, Guidolin D, Ciruela F, Agnati LF, Fuxe K (2011) Moonlighting characteristics of G protein-coupled receptors: focus on receptor heteromers and relevance for neurodegeneration. IUBMB Life 63(7):463–472. https://doi.org/10.1002/iub.473

    Article  CAS  PubMed  Google Scholar 

  9. Borroto-Escuela DO, Narvaez M, Perez-Alea M, Tarakanov AO, Jimenez-Beristain A, Mudo G, Agnati LF, Ciruela F, Belluardo N, Fuxe K (2015) Evidence for the existence of FGFR1-5-HT1A heteroreceptor complexes in the midbrain raphe 5-HT system. Biochem Biophys Res Commun 456(1):489–493. https://doi.org/10.1016/j.bbrc.2014.11.112

    Article  CAS  PubMed  Google Scholar 

  10. Borroto-Escuela DO, Perez-Alea M, Narvaez M, Tarakanov AO, Mudo G, Jimenez-Beristain A, Agnati LF, Ciruela F, Belluardo N, Fuxe K (2015) Enhancement of the FGFR1 signaling in the FGFR1-5-HT1A heteroreceptor complex in midbrain raphe 5-HT neuron systems. Relevance for neuroplasticity and depression. Biochem Biophys Res Commun 463(3):180–186. https://doi.org/10.1016/j.bbrc.2015.04.133

    Article  CAS  PubMed  Google Scholar 

  11. Borroto-Escuela DO, Romero-Fernandez W, Mudo G, Perez-Alea M, Ciruela F, Tarakanov AO, Narvaez M, Di Liberto V, Agnati LF, Belluardo N, Fuxe K (2012) Fibroblast growth factor receptor 1- 5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biol Psychiatry 71(1):84–91. https://doi.org/10.1016/j.biopsych.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  12. Flajolet M, Wang Z, Futter M, Shen W, Nuangchamnong N, Bendor J, Wallach I, Nairn AC, Surmeier DJ, Greengard P (2008) FGF acts as a co-transmitter through adenosine A(2A) receptor to regulate synaptic plasticity. Nat Neurosci 11(12):1402–1409. https://doi.org/10.1038/nn.2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang M, Wong AH, Liu F (2012) Interactions between NMDA and dopamine receptors: a potential therapeutic target. Brain Res 1476:154–163. https://doi.org/10.1016/j.brainres.2012.03.029

    Article  CAS  PubMed  Google Scholar 

  14. Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F (2004) Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 24(5):1149–1158. https://doi.org/10.1523/JNEUROSCI.3922-03.2004

    Article  CAS  PubMed  Google Scholar 

  15. Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11(2):177–183

    Article  CAS  Google Scholar 

  16. Fuxe K, Dahlstrom A, Hoistad M, Marcellino D, Jansson A, Rivera A, Diaz-Cabiale Z, Jacobsen K, Tinner-Staines B, Hagman B, Leo G, Staines W, Guidolin D, Kehr J, Genedani S, Belluardo N, Agnati LF (2007) From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev 55(1):17–54. https://doi.org/10.1016/j.brainresrev.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  17. Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98(6):3555–3560. https://doi.org/10.1073/pnas.061020198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401(2):163–186

    Article  CAS  Google Scholar 

  19. Spencer-Segal JL, Waters EM, Bath KG, Chao MV, McEwen BS, Milner TA (2011) Distribution of phosphorylated TrkB receptor in the mouse hippocampal formation depends on sex and estrous cycle stage. J Neurosci 31(18):6780–6790. https://doi.org/10.1523/JNEUROSCI.0910-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ambrogini P, Lattanzi D, Ciuffoli S, Betti M, Fanelli M, Cuppini R (2013) Physical exercise and environment exploration affect synaptogenesis in adult-generated neurons in the rat dentate gyrus: possible role of BDNF. Brain Res 1534:1–12. https://doi.org/10.1016/j.brainres.2013.08.023

    Article  CAS  PubMed  Google Scholar 

  21. Gimenez-Llort L, Schiffmann SN, Shmidt T, Canela L, Camon L, Wassholm M, Canals M, Terasmaa A, Fernandez-Teruel A, Tobena A, Popova E, Ferre S, Agnati L, Ciruela F, Martinez E, Scheel-Kruger J, Lluis C, Franco R, Fuxe K, Bader M (2007) Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain. Neurobiol Learn Mem 87(1):42–56. https://doi.org/10.1016/j.nlm.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  22. Zeng Y, Lv F, Li L, Yu H, Dong M, Fu Q (2012) 7,8-dihydroxyflavone rescues spatial memory and synaptic plasticity in cognitively impaired aged rats. J Neurochem 122(4):800–811. https://doi.org/10.1111/j.1471-4159.2012.07830.x

    Article  CAS  PubMed  Google Scholar 

  23. Lee MC, Okamoto M, Liu YF, Inoue K, Matsui T, Nogami H, Soya H (2012) Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling. J Appl Physiol 113(8):1260–1266. https://doi.org/10.1152/japplphysiol.00869.2012

    Article  PubMed  Google Scholar 

  24. Diogenes MJ, Fernandes CC, Sebastiao AM, Ribeiro JA (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24(12):2905–2913. https://doi.org/10.1523/JNEUROSCI.4454-03.2004

    Article  CAS  PubMed  Google Scholar 

  25. Fontinha BM, Diogenes MJ, Ribeiro JA, Sebastiao AM (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54(6):924–933. https://doi.org/10.1016/j.neuropharm.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  26. Mojsilovic-Petrovic J, Jeong GB, Crocker A, Arneja A, David S, Russell DS, Kalb RG (2006) Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J Neurosci 26(36):9250–9263. https://doi.org/10.1523/JNEUROSCI.1856-06.2006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Karolinska Institutets Forskningsstiftelser 2017 to D.O.B-E, the Swedish Medical Research Council (62X-00715-50-3), and Hjärnfonden 2018 to D.O.B-E. D.O.B-E belongs to Academia de Biólogos Cubanos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dasiel O. Borroto-Escuela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Di Palma, M. et al. (2019). Co-immunoprecipitation (Co-IP) of G Protein-Coupled Receptor (GPCR)-Receptor Tyrosine Kinase (RTK) Complexes from the Dorsal Hippocampus of the Rat Brain. In: Odagaki, Y., Borroto-Escuela, D. (eds) Co-Immunoprecipitation Methods for Brain Tissue . Neuromethods, vol 144. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8985-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8985-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8984-3

  • Online ISBN: 978-1-4939-8985-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics