Skip to main content

Tools for Understanding miRNA–mRNA Interactions for Reproducible RNA Analysis

  • Protocol
  • First Online:
Computational Biology of Non-Coding RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1912))

Abstract

MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. The use of RNA data in gene expression analysis has become increasingly important to gain insights into the regulatory mechanisms behind miRNA–mRNA interactions. As a result, we are confronted with a growing landscape of tools, while standards for reproducibility and benchmarking lag behind. This work identifies the challenges for reproducible RNA analysis, and highlights best practices on the processing and dissemination of scientific results. We found that the success of a tool does not solely depend on its performances: equally important is how a tool is received, and then supported within a community. This leads us to a detailed presentation of the RNA workbench, a community effort for sharing workflows and processing tools, built on top of the Galaxy framework. Here, we follow the community guidelines to extend its portfolio of RNA tools with the integration of the TriplexRNA (https://triplexrna.org). Our findings provide the basis for the development of a recommendation system, to guide users in the choice of tools and workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  2. Croce CM, Calin GA (2005) miRNAs, cancer, and stem cell division. Cell 122:6–7

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. PNAS 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006

    Article  CAS  PubMed  Google Scholar 

  5. Cho WCS (2010) MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol 42:1273–1281

    Article  CAS  PubMed  Google Scholar 

  6. Linsen SEV, de Wit E, Janssens G et al (2009) Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 6:474–476

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grüning BA, Fallmann J, Yusuf D et al (2017) The RNA workbench: best practices for RNA and high-throughput sequencing bioinformatics in Galaxy. Nucleic Acids Res 45:W560–W566. https://doi.org/10.1093/nar/gkx409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB (2011) The real cost of sequencing: higher than you think! Genome Biol 12:125

    Article  PubMed  PubMed Central  Google Scholar 

  11. Batut B, Hiltemann S, Bagnacani A, et al (2017) Community-driven data analysis training for biology. bioRxiv: 225680

    Google Scholar 

  12. Burks C (1999) Molecular biology database list. Nucleic Acids Res 27:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galperin MY, Rigden DJ, Fernández-Suárez XM (2015) The 2015 nucleic acids research database issue and molecular biology database collection. Nucleic Acids Res 43:D1–D5

    Article  CAS  PubMed  Google Scholar 

  14. Fox JA, Butland SL, McMillan S, Campbell G, Ouellette BFF (2005) The bioinformatics links directory: a compilation of molecular biology web servers. Nucleic Acids Res 33:W3–W24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brazas MD, Yim D, Yeung W, Ouellette BFF (2012) A decade of web server updates at the bioinformatics links directory: 2003–2012. Nucleic Acids Res 40:W3–W12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pettifer S, Thorne D, McDermott P, Attwood T, Baran J, Bryne JC, Hupponen T, Mowbray D, Vriend G (2009) An active registry for bioinformatics web services. Bioinformatics 25:2090–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pettifer S, Ison J, Kalaš M et al (2010) The EMBRACE web service collection. Nucleic Acids Res 38:W683–W688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhagat J, Tanoh F, Nzuobontane E et al (2010) BioCatalogue: a universal catalogue of web services for the life sciences. Nucleic Acids Res 38:W689–W694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Henry VJ, Bandrowski AE, Pepin A-S, Gonzalez BJ, Desfeux A (2014) OMICtools: an informative directory for multi-omic data analysis. Database (Oxford). https://doi.org/10.1093/database/bau069

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ison J, Rapacki K, Ménager H et al (2016) Tools and data services registry: a community effort to document bioinformatics resources. Nucleic Acids Res 44:D38–D47

    Article  CAS  PubMed  Google Scholar 

  21. Ison J, Kalaš M, Jonassen I, Bolser D, Uludag M, McWilliam H, Malone J, Lopez R, Pettifer S, Rice P (2013) EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats. Bioinformatics 29:1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  25. Hoffmann S, Otto C, Doose G et al (2014) A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15:R34

    Article  PubMed  PubMed Central  Google Scholar 

  26. Engström PG, Steijger T, Sipos B et al (2013) Systematic evaluation of spliced alignment programs for RNA-seq data. Nat Methods 10:1185–1191

    Article  PubMed  PubMed Central  Google Scholar 

  27. Möller S, Prescott SW, Wirzenius L et al (2017) Robust cross-platform workflows: how technical and scientific communities collaborate to develop, test and share best practices for data analysis. Data Sci Eng 2:232–244

    Article  Google Scholar 

  28. Sandve GK, Nekrutenko A, Taylor J, Hovig E (2013) Ten simple rules for reproducible computational research. PLoS Comput Biol 9:e1003285

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86

    Article  PubMed  PubMed Central  Google Scholar 

  30. Afgan E, Baker D, van den Beek M et al (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44:W3–W10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  32. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R (2012) LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 18:900–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3:e65

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zuker M, Sankoff D (1984) RNA secondary structures and their prediction. Bltn Mathcal Biol 46:591–621

    Article  CAS  Google Scholar 

  35. Corcoran DL, Georgiev S, Mukherjee N, Gottwein E, Skalsky RL, Keene JD, Ohler U (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12:R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gruber AR, Findeiß S, Washietl S, Hofacker IL, Stadler PF (2010) Rnaz 2.0: improved noncoding RNA detection. Pac Symp Biocomput 15:69–79

    Google Scholar 

  37. Blin K, Dieterich C, Wurmus R, Rajewsky N, Landthaler M, Akalin A (2015) DoRiNA 2.0—upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res 43:D160–D167

    Article  CAS  PubMed  Google Scholar 

  38. Lai X, Schmitz U, Gupta SK, Bhattacharya A, Kunz M, Wolkenhauer O, Vera J (2012) Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Res 40:8818–8834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmitz U, Lai X, Winter F, Wolkenhauer O, Vera J, Gupta SK (2014) Cooperative gene regulation by microRNA pairs and their identification using a computational workflow. Nucleic Acids Res 42:7539–7552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sætrom P, Heale BSE, Snøve O, Aagaard L, Alluin J, Rossi JJ (2007) Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 35:2333–2342

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the de.NBI and ELIXIR initiatives, for their support in the bioinformatics infrastructure. Thanks also to the Galaxy community, for developing, maintaining, and providing guidance on the use of this comprehensive framework. A warm thank you goes to the RBC Freiburg group, in particular to Anup Kumar, Björn Grüning, and Rolf Backofen for their efforts and commitment in improving the Galaxy framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bagnacani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bagnacani, A., Wolfien, M., Wolkenhauer, O. (2019). Tools for Understanding miRNA–mRNA Interactions for Reproducible RNA Analysis. In: Lai, X., Gupta, S., Vera, J. (eds) Computational Biology of Non-Coding RNA. Methods in Molecular Biology, vol 1912. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8982-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8982-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8981-2

  • Online ISBN: 978-1-4939-8982-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics