Skip to main content

Modeling Long ncRNA-Mediated Regulation in the Mammalian Cell Cycle

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1912))

Abstract

Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides that are not translated into proteins. They have recently gained widespread attention due to the finding that tens of thousands of lncRNAs reside in the human genome, and due to an increasing number of lncRNAs that are found to be associated with disease. Some lncRNAs, including disease-associated ones, play different roles in regulating the cell cycle. Mathematical models of the cell cycle have been useful in better understanding this biological system, such as how it could be robust to some perturbations and how the cell cycle checkpoints could act as a switch. Here, we discuss mathematical modeling techniques for studying lncRNA regulation of the mammalian cell cycle. We present examples on how modeling via network analysis and differential equations can provide novel predictions toward understanding cell cycle regulation in response to perturbations such as DNA damage.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  2. Toth KF, Hannon G (2012) Non-coding RNAs as regulators of transcription and genome organization. In: Genome organization and function in the cell nucleus. Wiley-VCH Verlag GmbH & Co., Weinheim. https://doi.org/10.1002/9783527639991.ch13

    Chapter  Google Scholar 

  3. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361

    Article  CAS  PubMed  Google Scholar 

  4. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perry RB-T, Ulitsky I (2016) The functions of long noncoding RNAs in development and stem cells. Development 143:3882–3894

    Article  PubMed  Google Scholar 

  7. Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18:206

    Article  PubMed  PubMed Central  Google Scholar 

  8. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ziegler C, Kretz M (2017) The More the Merrier—complexity in long non-coding RNA Loci. Front Endocrinol 8:90

    Article  Google Scholar 

  10. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang J, Zhang Z, Wang Z, Liu Y, Deng L (2017) Ontological function annotation of long non-coding RNAs through hierarchical multi-label classification. Bioinformatics 34:1750–1757

    Article  Google Scholar 

  12. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. St Laurent G, Wahlestedt C, Kapranov P (2015) The Landscape of long noncoding RNA classification. Trends Genet 31:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22:5–7

    Article  CAS  PubMed  Google Scholar 

  15. Ren K, Li Y, Lu H, Li Z, Li Z, Wu K, Li Z, Han X (2016) Long noncoding RNA HOTAIR controls cell cycle by functioning as a competing endogenous RNA in Esophageal squamous cell carcinoma. Transl Oncol 9:489–497

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang X, Weissman SM, Newburger PE (2014) Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol 11:777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sahu A, Singhal U, Chinnaiyan AM (2015) Long noncoding RNAs in cancer: from function to translation. Trends Cancer 1:93–109

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aguda BD (2005) Modeling the cell division cycle. In: Lect. Notes Math. Springer-Verlag, Berlin, pp 1–22

    Google Scholar 

  19. Ferrell JE, Tsai TY-C, Yang Q (2011) Modeling the cell cycle: why do certain circuits oscillate? Cell 144:874–885

    Article  CAS  PubMed  Google Scholar 

  20. Weis MC, Avva J, Jacobberger JW, Sreenath SN (2014) A data-driven, mathematical model of mammalian cell cycle regulation. PLoS One 9:e97130

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heldt FS, Barr AR, Cooper S, Bakal C, Novák B (2018) A comprehensive model for the proliferation–quiescence decision in response to endogenous DNA damage in human cells. Proc Natl Acad Sci U S A 115:2532–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aguda BD (1999) A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system. Proc Natl Acad Sci U S A 96:11352–11357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwamoto K, Tashima Y, Hamada H, Eguchi Y, Okamoto M (2008) Mathematical modeling and sensitivity analysis of G1/S phase in the cell cycle including the DNA-damage signal transduction pathway. Biosystems 94:109–117

    Article  CAS  PubMed  Google Scholar 

  24. Iwamoto K, Hamada H, Eguchi Y, Okamoto M (2011) Mathematical modeling of cell cycle regulation in response to DNA damage: exploring mechanisms of cell-fate determination. Biosystems 103:384–391

    Article  CAS  PubMed  Google Scholar 

  25. Aguda BD, Algar CK (2003) A structural analysis of the qualitative networks regulating the cell cycle and apoptosis. Cell Cycle 2:538–543

    Article  CAS  PubMed  Google Scholar 

  26. Zhao J, Liu Y, Zhang W, Zhou Z, Wu J, Cui P, Zhang Y, Huang G (2015) Long non-coding RNA Linc00152 is involved in cell cycle arrest, apoptosis, epithelial to mesenchymal transition, cell migration and invasion in gastric cancer. Cell Cycle 14:3112–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazar J, Rosado A, Shelley J, Marchica J, Westmoreland TJ (2017) The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma. Oncotarget 8:6589–6607

    Article  PubMed  Google Scholar 

  28. Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T (2013) Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci 70:4785–4794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A, Ponting CP, Odom DT, Marques AC (2012) Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet 8:e1002841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Szcześniak MW, Makałowska I (2016) lncRNA-RNA interactions across the human transcriptome. PLoS One 11:e0150353

    Article  PubMed  PubMed Central  Google Scholar 

  31. Forouzmand E, Owens NDL, Blitz IL, Paraiso KD, Khokha MK, Gilchrist MJ, Xie X, Cho KWY (2017) Developmentally regulated long non-coding RNAs in Xenopus tropicalis. Dev Biol 426:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aguda B, Friedman A (2008) Models of cellular regulation. Oxford University Press, New York

    Book  Google Scholar 

  33. Gauthier JH, Pohl PI (2011) A general framework for modeling growth and division of mammalian cells. BMC Syst Biol 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  34. Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ (2011) A hybrid model of mammalian cell cycle regulation. PLoS Comput Biol 7:e1001077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aguda BD, Goryachev AB (2007) From pathways databases to network models of switching behavior. PLoS Comput Biol 3:e152

    Article  PubMed Central  Google Scholar 

  36. Müller J, Kuttler C (2015) Methods and models in mathematical biology. Springer, Berlin

    Book  Google Scholar 

  37. Bernot G, Comet J-P, Richard A, Chaves M, Gouzé J-L, Dayan F (2013) Modeling and analysis of gene regulatory networks. In: Cazals F, Kornprobst P (eds) Modeling in computational biology and biomedicine. Springer, Berlin, pp 47–80

    Chapter  Google Scholar 

  38. Jalali S, Kapoor S, Sivadas A, Bhartiya D, Scaria V (2015) Computational approaches towards understanding human long non-coding RNA biology. Bioinformatics 31:2241–2251

    Article  CAS  PubMed  Google Scholar 

  39. Milo R (2002) Network Motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  PubMed  Google Scholar 

  40. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  CAS  PubMed  Google Scholar 

  41. Junker BH, Schreiber F (2008) Analysis of biological networks. Wiley-Interscience, Hoboken, NJ

    Book  Google Scholar 

  42. Barabasi A-L (2016) Network science. Cambridge University Press, Cambridge

    Google Scholar 

  43. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models—a review. Biosystems 96:86–103

    Article  CAS  PubMed  Google Scholar 

  44. Marbach D, Costello JC, Küffner R et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9:796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Creixell P, Reimand J et al (2015) Pathway and network analysis of cancer genomes. Nat Methods 12:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun M, Gadad SS, Kim D-S, Kraus WL (2015) Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell 59:698–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu F, Zhang S-W, Guo W-F, Wei Z-G, Chen L (2016) Inference of gene regulatory network based on local Bayesian networks. PLoS Comput Biol 12:e1005024

    Article  PubMed  PubMed Central  Google Scholar 

  48. Feng N, Ching T, Wang Y et al (2016) Analysis of microarray data on gene expression and methylation to identify long non-coding RNAs in non-small cell lung cancer. Sci Rep 6:37233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Filkov V (2005) Identifying gene regulatory networks from gene expression data. In: Handbook of computational molecular biology. CRC Press, Boca Raton, FL, pp 1–29

    Google Scholar 

  50. Leal LG, López C, López-Kleine L (2014) Construction and comparison of gene co-expression networks shows complex plant immune responses. PeerJ 2:e610

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang L, Feng XK, Ng YK, Li SC (2016) Reconstructing directed gene regulatory network by only gene expression data. BMC Genomics 17:430

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Huang H, Zhang D, Qiu J, Yang J, Wang K, Zhu L, Fan J, Yang J (2017) A review on recent computational methods for predicting noncoding RNAs. Biomed Res Int 2017:1–14

    CAS  Google Scholar 

  53. del Rosario RCH, Damasco JRCG, Aguda BD (2016) MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle. Sci Rep 6:32823

    Article  PubMed  PubMed Central  Google Scholar 

  54. Foster SS, De S, Johnson LK, Petrini JHJ, Stracker TH (2012) Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression. Proc Natl Acad Sci U S A 109:9953–9958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nowsheen S, Yang ES (2012) The intersection between DNA damage response and cell death pathways. Exp Oncol 34:243–254

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ding L, Wang M, Sun D, Li A (2018) TPGLDA: Novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph. Sci Rep 8:1065

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang X, Gao L, Guo X, Shi X, Wu H, Song F, Wang B (2014) A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases. PLoS One 9:e87797

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen X, Yan CC, Zhang X, You Z-H (2016) Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 18:558–576

    PubMed Central  Google Scholar 

  59. Gu C, Liao B, Li X, Cai L, Li Z, Li K, Yang J (2017) Global network random walk for predicting potential human lncRNA-disease associations. Sci Rep 7:12442

    Article  PubMed  PubMed Central  Google Scholar 

  60. Huang Y-A, Chan KCC, You Z-H (2018) Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34:812–819

    Article  CAS  PubMed  Google Scholar 

  61. Bloomingdale P, Nguyen VA, Niu J, Mager DE (2018) Boolean network modeling in systems pharmacology. J Pharmacokinet Pharmacodyn 45:159–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thieffry D (2007) Dynamical roles of biological regulatory circuits. Brief Bioinform 8:220–225

    Article  CAS  PubMed  Google Scholar 

  63. Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci U S A 101:5934–5939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Voit EO, Radivoyevitch T (2000) Biochemical systems analysis of genome-wide expression data. Bioinformatics 16:1023–1037

    Article  CAS  PubMed  Google Scholar 

  65. Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M (2003) Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19:643–650

    Article  CAS  PubMed  Google Scholar 

  66. Voit EO (2013) Biochemical systems theory: a review. ISRN Biomath 2013:1–53

    Article  Google Scholar 

  67. Chowdhury AR, Chetty M, Evans R (2015) Stochastic S-system modeling of gene regulatory network. Cogn Neurodyn 9:535–547

    Article  PubMed  PubMed Central  Google Scholar 

  68. Voit EO, Martens HA, Omholt SW (2015) 150 Years of the mass action law. PLoS Comput Biol 11:e1004012

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rabajante JF, Talaue CO (2015) Equilibrium switching and mathematical properties of nonlinear interaction networks with concurrent antagonism and self-stimulation. Chaos Solitons Fractals 73:166–182

    Article  Google Scholar 

  70. Marchese FP, Huarte M (2017) A long noncoding RNA in DNA replication and chromosome dynamics. Cell Cycle 16:151–152

    Article  CAS  PubMed  Google Scholar 

  71. Rabajante JF, Babierra AL (2015) Branching and oscillations in the epigenetic landscape of cell-fate determination. Prog Biophys Mol Biol 117:240–249

    Article  PubMed  Google Scholar 

  72. Sauer T (2012) Numerical analysis, 2nd edn. Pearson, Boston

    Google Scholar 

  73. Dhooge A, Govaerts W, Kuznetsov YA (2003) MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw 29:141–164

    Article  Google Scholar 

  74. Allen E (2007) Modeling with Itô stochastic differential equations. Springer, Dordrecht

    Google Scholar 

  75. Cardelli L, Csikász-Nagy A, Dalchau N, Tribastone M, Tschaikowski M (2016) Noise reduction in complex biological switches. Sci Rep 6:20214. https://doi.org/10.1038/srep20214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ulitsky I (2016) Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat Rev Genet 17:601–614

    Article  CAS  PubMed  Google Scholar 

  77. Joung J, Engreitz JM, Konermann S et al (2017) Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548:343–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of Dr. Baltazar D. Aguda. JFR is supported by the PCARI-CHED IHITM 2017-018 project: Glycoproteomics of Filipino lung cancer cell lines for biomarker discovery and anti-cancer screening of natural products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jomar F. Rabajante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rabajante, J.F., del Rosario, R.C.H. (2019). Modeling Long ncRNA-Mediated Regulation in the Mammalian Cell Cycle. In: Lai, X., Gupta, S., Vera, J. (eds) Computational Biology of Non-Coding RNA. Methods in Molecular Biology, vol 1912. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8982-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8982-9_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8981-2

  • Online ISBN: 978-1-4939-8982-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics