Skip to main content

Immune Monitoring of Cancer Patients by Multi-color Flow Cytometry

  • Protocol
  • First Online:
Immune Checkpoint Blockade

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1913))

Abstract

The irruption of immune-activating therapies to treat cancer has created a need for evaluating both the response and possible adverse events related to these novel treatments. Multicolor flow cytometry is a powerful tool that enables tumor immunologists to characterize the immune system of patients before and in response to immunotherapy. We present here a protocol for purifying human peripheral blood mononuclear cells and staining them with a set of six multicolor panels that allow for a thorough characterization of the immune system of healthy donors as well as patients that are undergoing treatments that may modify the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whiteside TL, Demaria S, Rodriguez-Ruiz ME, Zarour HM, Melero I (2016) Emerging opportunities and challenges in cancer immunotherapy. Clin Cancer Res 22(8):1845–1855. https://doi.org/10.1158/1078-0432.CCR-16-0049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lim WA, June CH (2017) The principles of engineering immune cells to treat cancer. Cell 168(4):724–740. https://doi.org/10.1016/j.cell.2017.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pico de Coana Y, Choudhury A, Kiessling R (2015) Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med 21(8):482–491. https://doi.org/10.1016/j.molmed.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  4. Weiden J, Tel J, Figdor CG (2018) Synthetic immune niches for cancer immunotherapy. Nat Rev Immunol 18(3):212–219. https://doi.org/10.1038/nri.2017.89

    Article  CAS  PubMed  Google Scholar 

  5. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S et al (2016) Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54:139–148. https://doi.org/10.1016/j.ejca.2015.11.016

    Article  CAS  PubMed  Google Scholar 

  6. Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y et al (2016) Standardizing flow Cytometry Immunophenotyping analysis from the human immunophenotyping consortium. Sci Rep 6:20686. https://doi.org/10.1038/srep20686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A (2017) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 37(2):163–176. https://doi.org/10.3109/07388551.2015.1128876

    Article  CAS  PubMed  Google Scholar 

  8. Poschke I, De Boniface J, Mao Y, Kiessling R (2012) Tumor-induced changes in the phenotype of blood-derived and tumor-associated T cells of early stage breast cancer patients. Int J Cancer 131(7):1611–1620. https://doi.org/10.1002/ijc.27410

    Article  CAS  PubMed  Google Scholar 

  9. Pico de Coana Y, Poschke I, Gentilcore G, Mao Y, Nystrom M, Hansson J et al (2013) Ipilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their Arginase1 production. Cancer Immunol Res 1(3):158–162. https://doi.org/10.1158/2326-6066.CIR-13-0016

    Article  CAS  PubMed  Google Scholar 

  10. Veluchamy JP, Delso-Vallejo M, Kok N, Bohme F, Seggewiss-Bernhardt R, van der Vliet HJ et al (2017) Standardized and flexible eight colour flow cytometry panels harmonized between different laboratories to study human NK cell phenotype and function. Sci Rep 7:43873. https://doi.org/10.1038/srep43873

    Article  PubMed  PubMed Central  Google Scholar 

  11. Elisa M, Del ZG, Della CM, Cristina MM, Alessandro M, De MA et al (2013) Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A 83(8):702–713. https://doi.org/10.1002/cyto.a.22302

    Article  Google Scholar 

  12. Erick TK, Brossay L (2016) Phenotype and functions of conventional and non-conventional NK cells. Curr Opin Immunol 38:67–74. https://doi.org/10.1016/j.coi.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  13. Poschke I, Kiessling R (2012) On the armament and appearances of human myeloid-derived suppressor cells. Clin Immunol 144(3):250–268. https://doi.org/10.1016/j.clim.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  14. Pico de Coana Y, Wolodarski M, Poschke I, Yoshimoto Y, Yang Y, Nystrom M et al (2017) Ipilimumab treatment decreases monocytic MDSCs and increases CD8 effector memory T cells in long-term survivors with advanced melanoma. Oncotarget 8(13):21539–21553. https://doi.org/10.18632/oncotarget.15368

    Article  Google Scholar 

  15. Lazarus AH, Ellis J, Blanchette V, Freedman J, Sheng-Tanner X (1998) Permeabilization and fixation conditions for intracellular flow cytometric detection of the T-cell receptor zeta chain and other intracellular proteins in lymphocyte subpopulations. Cytometry 32(3):206–213

    Article  CAS  PubMed  Google Scholar 

  16. Yang R, Lirussi D, Thornton TM, Jelley-Gibbs DM, Diehl SA, Case LK et al (2015) Mitochondrial Ca(2+) and membrane potential, an alternative pathway for interleukin 6 to regulate CD4 cell effector function. Elife 4:e06376. https://doi.org/10.7554/eLife.06376

    Article  CAS  PubMed Central  Google Scholar 

  17. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283. https://doi.org/10.1146/annurev-immunol-032712-095956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Palmer CS, Duette GA, Wagner MCE, Henstridge DC, Saleh S, Pereira C et al (2017) Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett 591(20):3319–3332. https://doi.org/10.1002/1873-3468.12843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schurich A, Pallett Laura J, Jajbhay D, Wijngaarden J, Otano I, Gill Upkar S et al (2016) Distinct metabolic requirements of exhausted and functional virus-specific CD8 T cells in the same host. Cell Rep 16(5):1243–1252. https://doi.org/10.1016/j.celrep.2016.06.078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meinelt E, Reunanen M, Edinger M, Jaimes M, Stall A, Sasaki D et al. (2012) Standardizing application setup across multiple flow cytometers using BD FACSDiva™ Version 6 Software. Technical document. BD biosciences. http://www.bdbiosciences.com/documents/BD_FACSDiva_Stndrd_App_Setup_TechBulletin.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Neo, S.Y., O’Reilly, A., Pico de Coaña, Y. (2019). Immune Monitoring of Cancer Patients by Multi-color Flow Cytometry. In: Pico de Coaña, Y. (eds) Immune Checkpoint Blockade. Methods in Molecular Biology, vol 1913. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8979-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8979-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8978-2

  • Online ISBN: 978-1-4939-8979-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics