Skip to main content

Systems-Level Immune Monitoring by Mass Cytometry

  • Protocol
  • First Online:
Immune Checkpoint Blockade

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1913))

Abstract

As therapies involving the modulation, stimulation, and deliberate excitation of the immune system are becoming routine, better methods for monitoring immune responses in human patients are needed. Mass cytometry allows for detailed profiling of all immune cell populations and their functional responses using a simple blood sample. When combined with appropriate computational analyses, the resolution for distinguishing desired responses from unproductive or even adverse reactions to immunotherapeutic interventions increases. Here we describe a core experimental and computational framework for global, systems-level immune monitoring by mass cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandura DR, Baranov VI, Ornatsky OI et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822

    Article  CAS  Google Scholar 

  2. Bendall SC, Simonds EF, Qiu P et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    Article  CAS  Google Scholar 

  3. Brodin P, Jojic V, Gao T et al (2015) Variation in the human immune system is largely driven by non-heritable influences. Cell 160:37–47

    Article  CAS  Google Scholar 

  4. Kaczorowski KJ, Shekhar K, Nkulikiyimfura D et al (2017) Continuous immunotypes describe human immune variation and predict diverse responses. Proc Natl Acad Sci U S A 114:E6097–E6106

    Article  CAS  Google Scholar 

  5. Wong MT, Ong DE, Lim FS et al (2016) A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 45:442–456

    Article  CAS  Google Scholar 

  6. Newell EW, Sigal N, Nair N et al (2013) Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol 31:623–629

    Article  CAS  Google Scholar 

  7. Chevrier S, Levine JH, VRT Z et al (2017) An immune atlas of clear cell renal cell carcinoma. Cell 169:736–749 e18

    Article  CAS  Google Scholar 

  8. Lavin Y, Kobayashi S, Leader A et al (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–765 e17

    Article  CAS  Google Scholar 

  9. Lakshmikanth T, Olin A, Chen Y et al (2017) Mass cytometry and topological data analysis reveal immune parameters associated with complications after allogeneic stem cell transplantation. Cell Rep 20:2238–2250

    Article  CAS  Google Scholar 

  10. Wei SC, Levine JH, Cogdill AP et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170:1120–1133 e17

    Article  CAS  Google Scholar 

  11. Phelan MC and Lawler G (2001) Cell counting. Current Protocols in Cytometry 00:A.3A.1–A.3A.4

    Google Scholar 

  12. Shekhar K, Brodin P, Davis MM et al (2014) Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc Natl Acad Sci U S A 111:202–207

    Article  CAS  Google Scholar 

  13. Weber LM, Robinson MD (2016) Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89:1084–1096

    Article  CAS  Google Scholar 

  14. Brodin P, Davis MM (2016) Human immune system variation. Nat Rev Immunol 17:21–29

    Article  Google Scholar 

  15. Lou X, Zhang G, Herrera I et al (2007) Polymer-based elemental tags for sensitive bioassays. Angew Chem Int Ed 46:6111–6114

    Article  CAS  Google Scholar 

  16. Sumatoh HR, Teng KW, Cheng Y et al (2017) Optimization of mass cytometry sample cryopreservation after staining. Cytometry A 91:48–61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petter Brodin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lakshmikanth, T., Brodin, P. (2019). Systems-Level Immune Monitoring by Mass Cytometry. In: Pico de Coaña, Y. (eds) Immune Checkpoint Blockade. Methods in Molecular Biology, vol 1913. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8979-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8979-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8978-2

  • Online ISBN: 978-1-4939-8979-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics