Skip to main content

Complement Regulation and Immune Evasion by Hepatitis C Virus

  • Protocol
  • First Online:
Book cover Hepatitis C Virus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1911))

Abstract

A prominent role for complement has been identified in the linkage of innate and adaptive immunity. The liver is the main source of complement and hepatocytes are the primary sites for synthesis of complement components in vivo. We have discovered that hepatitis C virus (HCV) impairs C4 and C3 synthesis. Liver damage may diminish capacity of complement synthesis in patients. However, we observed that the changes in measured complement components in chronically HCV infected patients do not correlate with liver fibrosis or rheumatoid factor present in the blood, serum albumin, or alkaline phosphatase levels. Complement component C3 is of critical importance in B cell activation and T cell-dependent antibody responses. C3 activity is required for optimal expansion of CD8+T cells during a systemic viral infection. Deficiencies in complement may predispose patients to infections via ineffective opsonization, and defects in lytic activity via membrane attack complex. Interestingly, C9 is significantly reduced at the mRNA level in chronically HCV infected liver biopsy specimens, while many hepatocyte derived complement components (C6, C8, Factor B, MASP1, and MBL) and unrelated genes remain mostly unaffected. This implies an HCV specific effect, not a global effect from liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Negro F, Alberti A (2011) The global health burden of hepatitis C virus infection. Liver Int 31(Suppl 2):1–3

    Article  Google Scholar 

  2. Gasque P (2004) Complement: a unique innate immune sensor for danger signals. Mol Immunol 41:1089–1098

    Article  CAS  Google Scholar 

  3. Kim DD, Song WC (2006) Membrane complement regulatory proteins. Clin Immunol 118:127–136

    Article  CAS  Google Scholar 

  4. Mollnes TE, Song WC, Lambris JD (2002) Complement in inflammatory tissue damage and disease. Trends Immunol 23:61–64

    Article  CAS  Google Scholar 

  5. Blue CE, Spiller OB, Blackbourn DJ (2004) The relevance of complement to virus biology. Virology 319:176–184

    Article  CAS  Google Scholar 

  6. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066

    Article  CAS  Google Scholar 

  7. Pangburn MK, Ferreira VP, Cortes C (2008) Discrimination between host and pathogens by the complement system. Vaccine 26(Suppl 8):I15–I21

    Article  CAS  Google Scholar 

  8. Hourcade D, Liszewski MK, Krych-Goldberg M, Atkinson JP (2000) Functional domains, structural variations and pathogen interactions of MCP, DAF and CR1. Immunopharmacology 49:103–116

    Article  CAS  Google Scholar 

  9. Seya T, Atkinson JP (1989) Functional properties of membrane cofactor protein of complement. Biochem J 264:581–588

    Article  CAS  Google Scholar 

  10. Williams P, Chaudhry Y, Goodfellow IG, Billington J, Powell R, Spiller OB et al (2003) Mapping CD55 function. The structure of two pathogen-binding domains at 1.7 A. J Biol Chem 278:10691–10696

    Article  CAS  Google Scholar 

  11. Banerjee A, Mazumdar B, Meyer K, Di Bisceglie AM, Ray RB, Ray R (2011) Transcriptional repression of C4 complement by hepatitis C virus proteins. J Virol 85:4157–4166

    Article  CAS  Google Scholar 

  12. Kim H, Meyer K, Di Bisceglie AM, Ray R (2013) Hepatitis C virus suppresses C9 complement synthesis and impairs membrane attack complex function. J Virol 87:5858–5867

    Article  CAS  Google Scholar 

  13. Mazumdar B, Kim H, Meyer K, Bose SK, Di Bisceglie AM, Ray RB et al (2013) Hepatitis C virus infection upregulates CD55 expression on the hepatocyte surface and promotes association with virus particles. J Virol 87:7902–7910

    Article  CAS  Google Scholar 

  14. Mazumdar B, Kim H, Meyer K, Bose SK, Di Bisceglie AM, Ray RB et al (2012) Hepatitis C virus proteins inhibit C3 complement production. J Virol 86:2221–2228

    Article  CAS  Google Scholar 

  15. Kwon YC, Kim H, Meyer K, Di Bisceglie AM, Ray R (2016) Distinct CD55 isoform synthesis and inhibition of complement-dependent cytolysis by hepatitis C virus. J Immunol 197:1127–1136

    Article  CAS  Google Scholar 

  16. Pio R, Corrales L, Lambris JD (2014) The role of complement in tumor growth. Adv Exp Med Biol 772:229–262

    Article  CAS  Google Scholar 

  17. Dumestre-Perard C, Ponard D, Drouet C, Leroy V, Zarski JP, Dutertre N et al (2002) Complement C4 monitoring in the follow-up of chronic hepatitis C treatment. Clin Exp Immunol 127:131–136

    Article  CAS  Google Scholar 

  18. Ali OS, Abo-Shadi MA, LN H (2005) The biological significance of serum complements C3 and C4 in HCV-related chronic liver diseases and hepatocellular carcinoma. Egypt J Immunol 12:91–99

    PubMed  Google Scholar 

  19. El-Fatah Fahmy Hanno A, Mohiedeen KM, Deghedy A, Sayed R (2014) Serum complements C3 and C4 in chronic HCV infection and their correlation with response to pegylated interferon and ribavirin treatment. Arab J Gastroenterol 15:58–62

    Article  Google Scholar 

  20. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  CAS  Google Scholar 

  21. Peitsch MC, Tschopp J (1991) Assembly of macromolecular pores by immune defense systems. Curr Opin Cell Biol 3:710–716

    Article  CAS  Google Scholar 

  22. Amet T, Ghabril M, Chalasani N, Byrd D, Hu N, Grantham A et al (2012) CD59 incorporation protects hepatitis C virus against complement-mediated destruction. Hepatology 55:354–363

    Article  CAS  Google Scholar 

  23. Roden MM, Lee KH, Panelli MC, Marincola FM (1999) A novel cytolysis assay using fluorescent labeling and quantitative fluorescent scanning technology. J Immunol Methods 226:29–41

    Article  CAS  Google Scholar 

  24. Medof ME, Walter EI, Rutgers JL, Knowles DM, Nussenzweig V (1987) Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med 165:848–864

    Article  CAS  Google Scholar 

  25. Osuka F, Endo Y, Higuchi M, Suzuki H, Shio Y, Fujiu K et al (2006) Molecular cloning and characterization of novel splicing variants of human decay-accelerating factor. Genomics 88:316–322

    Article  CAS  Google Scholar 

  26. Coyne KE, Hall SE, Thompson S, Arce MA, Kinoshita T, Fujita T et al (1992) Mapping of epitopes, glycosylation sites, and complement regulatory domains in human decay accelerating factor. J Immunol 149:2906–2913

    CAS  PubMed  Google Scholar 

  27. Miot S, Crespo S, Schifferli JA (2002) Distinct forms of DAF in urine and blood. J Immunol Methods 260:43–53

    Article  CAS  Google Scholar 

  28. Caras IW, Weddell GN (1989) Signal peptide for protein secretion directing glycophospholipid membrane anchor attachment. Science 243:1196–1198

    Article  CAS  Google Scholar 

  29. Kim H, Meyer K, Di Bisceglie AM, Ray R (2014) Inhibition of c3 convertase activity by hepatitis C virus as an additional lesion in the regulation of complement components. PLoS One 9:e101422

    Article  Google Scholar 

  30. Okroj M, Holmquist E, King BC, Blom AM (2012) Functional analyses of complement convertases using C3 and C5-depleted sera. PLoS One 7:e47245

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our research was supported by research grants DK080812 from NIDDK, U54-AI057160 from the NIAID to the Midwest Regional center of Excellence (MRCE) for Biodefense and Emerging Infectious Diseases Research, and from the Presidential and Liver Center Research Funds of Saint Louis University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kwon, YC., Ray, R. (2019). Complement Regulation and Immune Evasion by Hepatitis C Virus. In: Law, M. (eds) Hepatitis C Virus Protocols . Methods in Molecular Biology, vol 1911. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8976-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8976-8_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8975-1

  • Online ISBN: 978-1-4939-8976-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics