Monitoring of Interferon Response Triggered by Cells Infected by Hepatitis C Virus or Other Viruses Upon Cell–Cell Contact

  • Séverin Coléon
  • Sonia Assil
  • Marlène DreuxEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1911)


Plasmacytoid dendritic cells (pDCs) constitute a unique DC subset specialized in rapid and massive secretion of cytokines, including type I interferon (i.e., IFNα and IFNβ), known to be pivotal for both innate immunity and the onset of adaptive response. The production of type I IFNs by pDCs is primarily induced by the recognition of viral nucleic acids through Toll-like receptor (TLR)-7 and -9 sensors located in the endolysosomal compartment. Importantly, in the context of hepatitis C virus (HCV) infection, pDC type I IFN response is triggered by the sensing of infected cells via physical cell–cell contact. Such a feature is also observed for many genetically distant viruses, including notably viruses of the Retroviridae, Arenaviridae, Flaviviridae, Picornaviridaea, Togaviridae families and observed for various infected cell types. Here, we described a set of experimental methods for the ex vivo studies of the regulation of pDC activation upon physical cell–cell contact with virally infected cells.

Key words

Innate immunity Hepatitis C virus (HCV) Plasmacytoid dendritic cells (pDCs) Interferon (IFN) Cell–cell contact Inflammation Toll-like receptor (TLR) Imaging flow cytometry Confocal microscopy analysis Coculture 



We are grateful to Helana Paidassi (CIRI, INSERM U1111, Lyon) for critical reading of the manuscript and to our colleagues for encouragement and help. We are grateful to Camille Demure for the graphical design of Fig. 1. This work was supported by grants from the French “Agence Nationale pour la Recherche” (ANR-13-JSV3-0004-01-EXAMIN) and the “Agence Nationale pour la Recherche contre le SIDA et les Hépatites Virales” (ANRS-AO 2017-01, ECTZ35316) and the LabEx Ecofect (ANR-11-LABX-0048).


  1. 1.
    Swiecki M, Colonna M (2015) The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15:471–485CrossRefGoogle Scholar
  2. 2.
    Merad M, Sathe P, Helft J, Miller J, Mortha A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604CrossRefGoogle Scholar
  3. 3.
    Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8:594–606CrossRefGoogle Scholar
  4. 4.
    Panda SK, Kolbeck R, Sanjuan MA (2016) Plasmacytoid dendritic cells in autoimmunity. Curr Opin Immunol 44:20–25CrossRefGoogle Scholar
  5. 5.
    Izaguirre A, Barnes BJ, Amrute S, Yeow WS, Megjugorac N et al (2003) Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leukoc Biol 74:1125–1138CrossRefGoogle Scholar
  6. 6.
    Kumagai Y, Kumar H, Koyama S, Kawai T, Takeuchi O et al (2009) Cutting Edge: TLR-Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN-{alpha} production in plasmacytoid dendritic cells. J Immunol 182:3960–3964CrossRefGoogle Scholar
  7. 7.
    Thitithanyanont A, Engering A, Ekchariyawat P, Wiboon-ut S, Limsalakpetch A et al (2007) High susceptibility of human dendritic cells to avian influenza H5N1 virus infection and protection by IFN-alpha and TLR ligands. J Immunol 179:5220–5227CrossRefGoogle Scholar
  8. 8.
    Assil S, Webster B, Dreux M (2015) Regulation of the host antiviral state by intercellular communications. Viruses 7:4707–4733CrossRefGoogle Scholar
  9. 9.
    Bruel T, Dupuy S, Demoulins T, Rogez-Kreuz C, Dutrieux J et al (2014) Plasmacytoid dendritic cell dynamics tune interferon-alfa production in SIV-infected cynomolgus macaques. PLoS Pathog 10:e1003915CrossRefGoogle Scholar
  10. 10.
    Pichyangkul S, Endy TP, Kalayanarooj S, Nisalak A, Yongvanitchit K et al (2003) A blunted blood plasmacytoid dendritic cell response to an acute systemic viral infection is associated with increased disease severity. J Immunol 171:5571–5578CrossRefGoogle Scholar
  11. 11.
    Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M (2010) Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 33:955–966CrossRefGoogle Scholar
  12. 12.
    Swiecki M, Wang Y, Gilfillan S, Colonna M (2013) Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathog 9:e1003728CrossRefGoogle Scholar
  13. 13.
    Smit JJ, Rudd BD, Lukacs NW (2006) Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J Exp Med 203:1153–1159CrossRefGoogle Scholar
  14. 14.
    Sozzani S, Vermi W, Del Prete A, Facchetti F (2010) Trafficking properties of plasmacytoid dendritic cells in health and disease. Trends Immunol 31:270–277CrossRefGoogle Scholar
  15. 15.
    Webster B, Werneke SW, Zafirova B, This S, Coleon S, Decembre E, Paidassi H, Bouvier I, Joubert PE, Duffy D et al (2018) Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses. Elife 7:e34273.
  16. 16.
    Dreux M, Garaigorta U, Boyd B, Decembre E, Chung J et al (2012) Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12:558–570CrossRefGoogle Scholar
  17. 17.
    Longatti A, Boyd B, Chisari FV (2015) Virion-independent transfer of replication competent HCV RNA between permissive cells. J Virol 89:2956–2961CrossRefGoogle Scholar
  18. 18.
    Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q et al (2013) Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A 110:13109–13113CrossRefGoogle Scholar
  19. 19.
    Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G (2014) Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog 10:e1004424CrossRefGoogle Scholar
  20. 20.
    Liu Z, Zhang X, Yu Q, He JJ (2014) Exosome-associated hepatitis C virus in cell cultures and patient plasma. Biochem Biophys Res Commun 455:218–222CrossRefGoogle Scholar
  21. 21.
    Saha B, Kodys K, Adejumo A, Szabo G (2017) Circulating and exosome-packaged hepatitis C single-stranded RNA induce monocyte differentiation via TLR7/8 to polarized macrophages and fibrocytes. J Immunol 198:1974–1984CrossRefGoogle Scholar
  22. 22.
    Devhare PB, Sasaki R, Shrivastava S, Di Bisceglie AM, Ray R et al (2017) Exosome-mediated intercellular communication between hepatitis C virus-infected hepatocytes and hepatic stellate cells. J Virol 91:e02225–e02216PubMedPubMedCentralGoogle Scholar
  23. 23.
    Feng Z, Li Y, McKnight KL, Hensley L, Lanford RE et al (2014) Human pDCs preferentially sense enveloped hepatitis A virions. J Clin Invest 125:169–176CrossRefGoogle Scholar
  24. 24.
    Wieland SF, Takahashi K, Boyd B, Whitten-Bauer C, Ngo N et al (2014) Human plasmacytoid dendritic cells sense lymphocytic choriomeningitis virus-infected cells in vitro. J Virol 88:752–757CrossRefGoogle Scholar
  25. 25.
    Takahashi K, Asabe S, Wieland S, Garaigorta U, Gastaminza P et al (2010) Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc Natl Acad Sci U S A 107:7431–7436CrossRefGoogle Scholar
  26. 26.
    Decembre E, Assil S, Hillaire ML, Dejnirattisai W, Mongkolsapaya J et al (2014) Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells. PLoS Pathog 10:e1004434CrossRefGoogle Scholar
  27. 27.
    Bruni D, Chazal M, Sinigaglia L, Chauveau L, Schwartz O et al (2015) Viral entry route determines how human plasmacytoid dendritic cells produce type I interferons. Sci Signal 8:ra25CrossRefGoogle Scholar
  28. 28.
    Lepelley A, Louis S, Sourisseau M, Law HK, Pothlichet J et al (2011) Innate sensing of HIV-infected cells. PLoS Pathog 7:e1001284CrossRefGoogle Scholar
  29. 29.
    Python S, Gerber M, Suter R, Ruggli N, Summerfield A (2013) Efficient sensing of infected cells in absence of virus particles by plasmacytoid dendritic cells is blocked by the viral ribonuclease E(rns.). PLoS Pathog 9:e1003412CrossRefGoogle Scholar
  30. 30.
    Garcia-Nicolas O, Auray G, Sautter CA, Rappe JC, McCullough KC et al (2016) Sensing of porcine reproductive and respiratory syndrome virus-infected macrophages by plasmacytoid dendritic cells. Front Microbiol 7:771CrossRefGoogle Scholar
  31. 31.
    Costa VV, Fagundes CT, da Gloria de Souza D, Teixeira MM (2013) Inflammatory and innate immune responses in dengue infection: protection versus disease induction. Am J Pathol 182:1950–1961CrossRefGoogle Scholar
  32. 32.
    Tomasello E, Pollet E, Vu Manh TP, Uze G, Dalod M (2014) Harnessing mechanistic knowledge on beneficial versus deleterious IFN-I effects to design innovative immunotherapies targeting cytokine activity to specific cell types. Front Immunol 5:526CrossRefGoogle Scholar
  33. 33.
    Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM et al (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922CrossRefGoogle Scholar
  34. 34.
    Gastaminza P, Dryden KA, Boyd B, Wood MR, Law M et al (2010) Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. J Virol 84:10999–11009CrossRefGoogle Scholar
  35. 35.
    Kato T, Date T, Miyamoto M, Furusaka A, Tokushige K et al (2003) Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125:1808–1817CrossRefGoogle Scholar
  36. 36.
    Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796CrossRefGoogle Scholar
  37. 37.
    Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T et al (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102:9294–9299CrossRefGoogle Scholar
  38. 38.
    Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626CrossRefGoogle Scholar
  39. 39.
    Zhong J, Gastaminza P, Chung J, Stamataki Z, Isogawa M et al (2006) Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J Virol 80:11082–11093CrossRefGoogle Scholar
  40. 40.
    Dreux M, Gastaminza P, Wieland SF, Chisari FV (2009) The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci U S A 106:14046–14051CrossRefGoogle Scholar
  41. 41.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3 22Google Scholar
  42. 42.
    Boson B, Denolly S, Turlure F, Chamot C, Dreux M et al (2017) Daclatasvir prevents hepatitis C virus Infectivity by blocking transfer of the viral genome to assembly sites. Gastroenterology 152:895–907CrossRefGoogle Scholar
  43. 43.
    Cho S, Irianto J, Discher DE (2017) Mechanosensing by the nucleus: From pathways to scaling relationships. J Cell Biol 216:305–315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ LyonLyonFrance

Personalised recommendations