Live Cell Imaging of Hepatitis C Virus Trafficking in Hepatocytes

  • Yasmine Baktash
  • Glenn RandallEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1911)


Standard fixed cell confocal microscopy is inherently limited in visualizing dynamic processes involving two- and three-dimensional movement. To overcome these limitations, live cell imaging approaches have been developed to study hepatitis C virus (HCV) entry, replicase protein trafficking, virion assembly, and egress. These studies have relied on fluorescent labeling of viral proteins by epitope tag insertion, genome labeling via nucleophilic dyes, or using lipophilic dyes to label the virion envelope. In this method review, we describe two approaches to study HCV virion trafficking in live cells. Lipophilic labeling of the envelope allows for study of the early events (through virion uncoating/fusion) in the HCV lifecycle. Tetracysteine (TC) tag insertion into the capsid protein permits study of virion assembly and capsid trafficking via binding of a fluorogenic biarsenical dye.

Key words

Hepatitis C virus Fluorescent labeling Live cell imaging Viral entry DiD Tetracysteine tag TC-core 



We thank Kelly Coller Metzinger, The University of Chicago Light Microscopy Facility and its director Vytas Bindokas for helping develop this protocol. This work was funded by NIAID (AI080703). Y.B. was funded by NIH training grant T32 GM007183.


  1. 1.
    Eyre NS, Fiches GN, Aloia AL, Helbig KJ, McCartney EM, McErlean CS et al (2014) Dynamic imaging of the hepatitis C virus NS5A protein during a productive infection. J Virol 88:3636–3652CrossRefGoogle Scholar
  2. 2.
    Wolk B, Buchele B, Moradpour D, Rice CM (2008) A dynamic view of hepatitis C virus replication complexes. J Virol 82:10519–10531CrossRefGoogle Scholar
  3. 3.
    Chukkapalli V, Berger KL, Kelly SM, Thomas M, Deiters A, Randall G (2015) Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides. Virology 476:168–179CrossRefGoogle Scholar
  4. 4.
    Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC et al (2005) Complete replication of hepatitis C virus in cell culture. Science 309:623–626CrossRefGoogle Scholar
  5. 5.
    Lindenbach BD, Meuleman P, Ploss A, Vanwolleghem T, Syder AJ, McKeating JA et al (2006) Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci U S A 103:3805–3809CrossRefGoogle Scholar
  6. 6.
    Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z et al (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796CrossRefGoogle Scholar
  7. 7.
    Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR et al (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102:9294–9299CrossRefGoogle Scholar
  8. 8.
    Coller KE, Berger KL, Heaton NS, Cooper JD, Yoon R, Randall G (2009) RNA interference and single particle tracking analysis of hepatitis C virus endocytosis. PLoS Pathog 5:e1000702CrossRefGoogle Scholar
  9. 9.
    Coller KE, Heaton NS, Berger KL, Cooper JD, Saunders JL, Randall G (2012) Molecular determinants and dynamics of hepatitis C virus secretion. PLoS Pathog 8:e1002466CrossRefGoogle Scholar
  10. 10.
    Counihan NA, Rawlinson SM, Lindenbach BD (2011) Trafficking of hepatitis C virus core protein during virus particle assembly. PLoS Pathog 7:e1002302CrossRefGoogle Scholar
  11. 11.
    Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM (2007) Imaging poliovirus entry in live cells. PLoS Biol 5:e183CrossRefGoogle Scholar
  12. 12.
    Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (2003) Visualizing infection of individual influenza viruses. Proc Natl Acad Sci U S A 100:9280–9285CrossRefGoogle Scholar
  13. 13.
    van der Schaar HM, Rust MJ, Chen C, van der Ende-Metselaar H, Wilschut J, Zhuang X et al (2008) Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog 4:e1000244CrossRefGoogle Scholar
  14. 14.
    van der Schaar HM, Rust MJ, Waarts BL, van der Ende-Metselaar H, Kuhn RJ, Wilschut J et al (2007) Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81:12019–12028CrossRefGoogle Scholar
  15. 15.
    Hijikata M, Shimizu YK, Kato H, Iwamoto A, Shih JW, Alter HJ et al (1993) Equilibrium centrifugation studies of hepatitis C virus: evidence for circulating immune complexes. J Virol 67:1953–1958PubMedPubMedCentralGoogle Scholar
  16. 16.
    Sainz B Jr, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S et al (2012) Identification of the Niemann-pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 18:281–285CrossRefGoogle Scholar
  17. 17.
    Hoffmann C, Gaietta G, Zurn A, Adams SR, Terrillon S, Ellisman MH et al (2010) Fluorescent labeling of tetracysteine-tagged proteins in intact cells. Nat Protoc 5:1666–1677CrossRefGoogle Scholar
  18. 18.
    Liu Z, He JJ (2013) Cell-cell contact-mediated hepatitis C virus (HCV) transfer, productive infection, and replication and their requirement for HCV receptors. J Virol 87:8545–8558CrossRefGoogle Scholar
  19. 19.
    Berger KL, Cooper JD, Heaton NS, Yoon R, Oakland TE, Jordan TX et al (2009) Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc Natl Acad Sci U S A 106:7577–7582CrossRefGoogle Scholar
  20. 20.
    Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232CrossRefGoogle Scholar
  21. 21.
    Randall G, Chen L, Panis M, Fischer AK, Lindenbach BD, Sun J et al (2006) Silencing of USP18 potentiates the antiviral activity of interferon against hepatitis C virus infection. Gastroenterology 131:1584–1591CrossRefGoogle Scholar
  22. 22.
    Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S et al (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci U S A 104:12884–12889CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyThe University of ChicagoChicagoUSA

Personalised recommendations