Skip to main content

Circulating Cell-Free DNA and Cancer Therapy Monitoring: Methods and Potential

  • Protocol
  • First Online:
  • 2443 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1909))

Abstract

The monitoring of therapy during the treatment of cancer patients is currently assessed by the levels of circulating tumor cells or by PET/CT scans. Neither approach has the sensitivity or specificity to be very sure of the efficacy of the treatment. Moreover, PET/CT scans can be both comparatively expensive and produce low levels of radiation for the patient. The advent of the possibility of using circulating DNA released from the tumor permits (1) a possible early marker of the presence of the cancer, (2) an indication of the success of the primary treatment, (3) an indication of the early presence of possible metastasis, (4) a marker of the success of secondary subsequent treatment, (5) determining which patients can benefit from a particular treatment, and (6) offering a prognosis. These aspects will be discussed concerning the application of circulating tumor DNA analysis to the monitoring of cancer patients undergoing therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Economopoulos P, Georgoulias V, Kotsakis A (2017) Classifying circulating tumor cells to monitor cancer progression. Expert Rev Mol Diagn 17:153–165

    Article  CAS  Google Scholar 

  2. Yan W-T, Cui X, Chen Q et al (2017) Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis. Sci Rep 7:43464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Horn P, Jakobsen EH, Madsen JS et al (2016) New approach for interpreting changes in circulating tumour cells (CTC) for evaluation of treatment effect in metastatic breast cancer. Trans Oncol 7:694–701

    Article  Google Scholar 

  4. Tibbe AG, Miller MC, Terstappen LW (2007) Statistical considerations for enumeration of circulating tumor cells. Cytometry A 71:154–162

    Article  PubMed  Google Scholar 

  5. Allan AL, Keeney M (2010) Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. J Oncol 2010:426218, 10 p.

    Article  PubMed  Google Scholar 

  6. Kowalik A, Kowalewska M, Gózdz S (2017) Current approaches for avoiding the limitations of circulating tumor cells detection methods—implications for diagnosis and treatment of patients with solid tumors. Trans Res 185:58–84

    Article  CAS  Google Scholar 

  7. Ashworth TR (1869) A case of cancer in which cells similar to those in tumours were seen in blood after death. Aust Med J 14:146–147

    Google Scholar 

  8. McNamara D (2016) Hidden costs of cancer from CT scans add up. Medscape. Apr 25

    Google Scholar 

  9. Gahan PB (2018) Introduction—liquid biopsies in cancer studies. Trans Cancer Res 7(Suppl 2):S101–S104. https://doi.org/10.21037/tcr.2018.02.10

    Article  CAS  Google Scholar 

  10. Gahan PB (2010) Circulating nucleic acids in plasma and serum: diagnosis and prognosis in cancer. EPMA J 1:503–512

    Article  PubMed  PubMed Central  Google Scholar 

  11. Beck J, Urnovitz HB, Riggert J et al (2009) Profile of the circulating DNA in apparently healthy individuals. Clin Chem 55:730–738

    Article  CAS  PubMed  Google Scholar 

  12. Holdenrieder S, Eichhorn P, Beuers U (2006) Nucleosomal DNA fragments in autoimmune diseases. In: Swaminathan R, Butt A, Gahan PB (eds) Circulating nucleic acids in plasma and serum IV, Ann N Y Acad Sci, vol 1075, Blackwell Publishing, Boston, MA, pp 318–327

    Google Scholar 

  13. Thierry AR, Mouliere F, Gongora C et al (2010) Origin and quantification of circulating DNA in mice and human colorectal cancer xenografts. Nucleic Acid Res 38:6159–6175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thierry AR, El Messaoudi S, Gahan PB et al (2016) Origins, structures and functions of circulating DNA in oncology. Cancer Metastasis Rev 35:347–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stroun M, Anker P, Maurice P et al (1997) Circulating nucleic acids in higher organisms. Int Rev Cytol 51:1–48

    Google Scholar 

  16. Gahan PB, Stroun M (2010) The biology of circulating nucleic acids in plasma and serum. In: Rykova EY, Kikuchi Y (eds) Extracellular nucleic acids, Nucleic acids and molecular biology. Springer, Berlin

    Google Scholar 

  17. Diehl F, Li M, Dressman D et al (2005) Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A 102(45):16368–16373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suzuki N, Kamataki A, Yamaki J et al (2008) Characterisation of circulating DNA in healthy human plasma. Clin Chim Acta 387:55–58

    Article  CAS  PubMed  Google Scholar 

  19. Zhong XY, Ladewig A, Schmid S et al (2007) Elevated level of cell free plasma DNA is associated with breast cancer. Arch Gynecol Obstet 276:327–331

    Article  CAS  PubMed  Google Scholar 

  20. Divella R, Tommasi S, Lacalamita R et al (2009) Circulating hTERT DNA in early breast cancer. Anticancer Res 29:2845–2849

    CAS  PubMed  Google Scholar 

  21. Schwarzenbach H, Stoehlmacher J, Pantel K et al (2008) Detection and monitoring of cell-free DNA in blood of patients with colorectal cancer. Ann N Y Acad Sci 1137:190196

    Article  CAS  Google Scholar 

  22. Mouliere F, El Messaoudi S, Gongora C et al (2013) Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol 6:319–328

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thierry AR, Mouliere F, Gongora C et al (2010) Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res 38:6159–6175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. El Messaoudi S, Mouliere F, Du Manoir S et al (2016) Circulating DNA as a strong multi-marker prognostic tool for metastatic colorectal cancer patient management care. Clin Cancer Res 22:3067–3077

    Article  PubMed  CAS  Google Scholar 

  25. Nygaard AD, Holdgaard PC, Spindler KL et al (2014) The correlation between cell-free DNA and tumour burden was estimated by PET/CT in patients with advanced NSCLC. Br J Cancer 110:363–368

    Article  CAS  PubMed  Google Scholar 

  26. El Messaoudi S, Thierry A (2015) Pre-analytical requirements for analysing nucleic acids from blood. In: Gahan PB (ed) Circulating nucleic acids in early diagnosis, prognosis and treatment monitoring, Advances in predictive, preventive medicine, vol 5. Springer, Dordrecht, pp 45–70

    Google Scholar 

  27. Holdenrieder S (2015) CNAPS in therapy monitoring. In: Gahan PB (ed) Circulating nucleic acids in early diagnosis, prognosis and treatment monitoring, Advances in predictive, preventive medicine, vol 5. Springer, Dordrecht, pp 325–370

    Google Scholar 

  28. Tamkovich SN, Bryzgunova OE, Rykova EY (2005) Circulating nucleic acids in blood of healthy male and female donors. Clin Chem 51:1317–1319

    Article  CAS  PubMed  Google Scholar 

  29. Ledoux L, Charles P (1972) Fate of exogenous DNA in mammals. In: Ledoux L (ed) Uptake of informative molecules by living cells. North-Holland Publishing Co., Amsterdam, pp 397–413

    Google Scholar 

  30. Gosse C, Le Pecq JB, Defrance P et al (1965) Initial degradation of deoxyribonucleic acid after injection in mammals. Cancer Res 25:877–883

    CAS  PubMed  Google Scholar 

  31. Tsumita T, Iwagana M (1963) Fate of injected deoxyribonucleic acid in mice. Nature 198:1088–1089

    Article  CAS  PubMed  Google Scholar 

  32. Gauthier VJ, Tyler LN, Mannik M (1996) Blood clearance kinetics and liver uptake of mononucleosomes in mice. J Immunol 156:1151–1156

    CAS  PubMed  Google Scholar 

  33. Lo YMD, Zhang J, Leung TN et al (1999) Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 64:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adams DH, Gahan PB (1982) Stimulated and non-stimulated rat spleen cells release different DNA-complexes. Differentiation 22:47–52

    Article  CAS  PubMed  Google Scholar 

  35. Adams DH, Gahan PB (1983) The DNA extruded by rat spleen cells in culture. Int J Biochem 15:547–552

    Article  CAS  PubMed  Google Scholar 

  36. Adams DH, Diaz N, Gahan PB (1997) In vitro stimulation by tumour cell media of [3H]thymidine incorporation by mouse spleen lymphocytes. Cell Biochem Funct 15:119–126

    Article  CAS  PubMed  Google Scholar 

  37. Gahan PB, Stroun M (2010) Biology of CNAPS. In: Yo Kikuchi Y, Rykova EY (eds) Extracellular nucleic acids, Nucleic acids and molecular biology. Springer, Berlin, pp 167–189

    Chapter  Google Scholar 

  38. Zhang R, Nakahira K, Guo X et al (2016) Very short mitochondrial DNA fragments and heteroplasmy in human plasma. Sci Rep 6:36097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strydom C, Robinson C, Pretorius E et al (2006) The effect of selected metals on the central metabolic pathways in biology. Water SA 32:543–554

    CAS  Google Scholar 

  40. Mouliere F, Robert B, Peyrotte EA et al (2011) High fragmentation characterizes tumour-derived circulating DNA. PLoS One 6:e23418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holdenrieder S, Stieber P, Bodenmueller H et al (2001) Nucleosomes in serum of patients with benign and malignant diseases. Int J Cancer 95:114–120

    Article  CAS  PubMed  Google Scholar 

  42. Holdenrieder S, Stieber P, von Pawel J et al (2004) Circulating nucleosomes predict the response to chemotherapy in patients with advanced non-small cell lung cancer. Clin Cancer Res 10:5981–5987

    Article  CAS  PubMed  Google Scholar 

  43. Holdenrieder S, Stieber P, von Pawel J et al (2006) Early and specific prediction of the therapeutic efficiency in lung cancer by nucleosomal DNA and cytokeratin fragments. Ann N Y Acad Sci 1075:244–257

    Article  CAS  PubMed  Google Scholar 

  44. Kremer A, Holdenrieder S, Stieber P et al (2006) Nucleosomes in colorectal cancer patients during radiochemotherapy. Tumour Biol 27:235–242

    Article  CAS  PubMed  Google Scholar 

  45. Wittwer C, Boeck S, Heinemann V et al (2013) Circulating nucleosomes and immunogenic cell death markers HMGB1, sRAGE and DNAse in patients with advanced pancreatic cancer undergoing chemotherapy. Int J Cancer 133:2619–2630

    CAS  PubMed  Google Scholar 

  46. Stoetzer OJ, Ferching DM, Salat C et al (2013) Prediction of response to neoadjuvant chemotherapy in breast cancer patients by circulating nucleosomes. Cancer Lett 336:140–148

    Article  CAS  PubMed  Google Scholar 

  47. Nagata S, Nagase H, Kawane K et al (2003) Apoptosis at a glance: death or life? Cell Death Differ 10:108–116

    Article  CAS  PubMed  Google Scholar 

  48. Nagata S (2005) DNA degradation in development and programmed cell death. Ann Rev Immunol 23:853–875

    Article  CAS  Google Scholar 

  49. Grunt M, Hillebrand T, Schwarzenbach H (2018) Clinical relevance of size selection of circulating DNA. Transl Cancer Res 7:S171

    Article  CAS  Google Scholar 

  50. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437

    Article  CAS  PubMed  Google Scholar 

  51. Jiang P, Chan CW, Chan KC et al (2015) Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci U S A 112:E1317–E1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng YW, Chan KC, Sun H et al (2012) Nonhematopoietically derived DNA is shorter than hematopoietically derived DNA in plasma: a transplantation model. Clin Chem 58:549–558

    Article  CAS  PubMed  Google Scholar 

  53. Schwarzenbach H, Pantel K (2015) Circulating DNA as biomarker in breast cancer. Breast Cancer Res 17:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chandrananda D, Thorne NP, Bahlo M (2015) High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA. BMC Med Genet 8:29

    Google Scholar 

  55. Lo YM, Chan KC, Sun H et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2:61ra91

    Article  CAS  PubMed  Google Scholar 

  56. Wang M, Block TM, Steel L et al (2004) Preferential isolation of fragmented DNA enhances the detection of circulating k-ras DNA. Clin Chem 50:211–213

    Article  CAS  PubMed  Google Scholar 

  57. Moser T, Ulz P, Zhou Q et al (2017) Single-stranded DNA library preparation does not preferentially enrich circulating tumor DNA. Clin Chem 63:1656–1659

    Article  CAS  PubMed  Google Scholar 

  58. Heidary M, Auer M, Ulz P et al (2014) The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res 16:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Heitzer E, Auer M, Hoffmann EM et al (2013) Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer 133:346–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oellerich M, Schütz E, Beck J et al (2017) Using circulating cell-free DNA to monitor personalized cancer therapy. Crit Rev Clin Lab Sci 54:205

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt B, Fleischhacker M (2018) Is liquid biopsy ready for the litmus test and what has been achieved so far to deal with pre-analytical issues? Transl Cancer Res 7:S130

    Article  CAS  Google Scholar 

  62. Ladas I, Fitarelli-Kiehl M, Song C (2017) Multiplexed elimination of wild-type DNA and high-resolution melting prior to targeted resequencing of liquid biopsies. Clin Chem 63:1605–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gahan PB (2015) A brief history and the present and future status of CNAPS. In: Gahan PB (ed) Circulating nucleic acids in early diagnosis, prognosis and treatment monitoring, Advances in predictive, preventive medicine, vol 5. Springer, Dordrecht, pp 3–14

    Google Scholar 

  64. Pan W, Quake SR (2015) Genomic approaches to the analysis of cell free nucleic acids. In: Gahan PB (ed) Circulating nucleic acids in early diagnosis, prognosis and treatment monitoring, Advances in predictive, preventive medicine, vol 5. Springer, Dordrecht, pp 113–139

    Google Scholar 

  65. Zhou Q, Moser T, Perakis S et al (2018) Untargeted profiling of cell-free circulating DNA. Transl Cancer Res 7:S140–S152. https://doi.org/10.21037/tcr.2017.10.11

    Article  CAS  Google Scholar 

  66. Roschewski M, Staudt LM, Wilson WH (2016) Dynamic monitoring of circulating tumor DNA in non-Hodgkin lymphoma. Blood 127:3127–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Berger AW, Schwerdel D, Welz H et al (2017) Treatment monitoring in metastatic colorectal cancer patients by quantification and KRAS genotyping of circulating cell-free DNA. PLoS One 12(3):e0174308. https://doi.org/10.1371/journal.pone.0174308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Swisher EM, Wollan M, Mahtani SM et al (2005) Tumor-specific p53 sequences in blood and peritoneal fluid of women with epithelial ovarian cancer. Am J Obstet Gynecol 193:662–667

    Article  CAS  PubMed  Google Scholar 

  69. Thålin C, Lundström S, Seignez C et al (2018) Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS One 13:e0191231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Cohen JD, Javed AA, Thoburn C et al (2017) Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A 114:10202–10207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cohen JD, Li L, Wang Y et al (2018) Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359:926–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Snyder MW, Kircher M, Hill AJ et al (2016) Cell-free DNA compromises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164:57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Seufferlein T, Schwerdel D, Welz H et al (2017) Treatment monitoring of metastatic colorectal cancer by quantification and genotyping of mutated KRAS in circulating cell-free DNA. J Clin Oncol 35:e15037. https://doi.org/10.1200/JCO.2017.35.15_suppl.e15037

    Article  Google Scholar 

  74. Chen T, He R, Hu X et al (2017) Circulating tumour DNA: a potential biomarker from solid tumors’ monitor to anticancer therapies. Cancer Transl Med 3:64–67

    Article  CAS  Google Scholar 

  75. Shu Y, Wu X, Tong X et al (2017) Circulating tumor DNA mutation profiling by targeted next generation sequencing provides guidance for personalized treatments in multiple cancer types. Sci Rep 7:583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Forshew T, Murtaza M, Parkinson C et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4:136ra68. https://doi.org/10.1126/scitranslmed.3003726

    Article  CAS  PubMed  Google Scholar 

  77. Abbosh C, Birkbak NJ, Wilson GA et al (2017) Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545:446–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perets P, Greenberg O, Shenter T et al (2018) Mutant KRAS circulating tumor DNA is an accurate tool for pancreatic cancer monitoring. Oncologist 23:566–572. https://doi.org/10.1634/theoncologist.2017-0467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schiavon G, Hrebien S, Garcia-Murillas I et al (2015) Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med 7:313ra182. https://doi.org/10.1126/scitranslmed.aac7551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mohan S, Heitzer E, Ulz P et al (2014) Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet 10:e1004271. https://doi.org/10.1371/journal.pgen.1004271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Thierry AR, El Messaoudi S, Mollevi C et al (2017) Clinical utility of circulating DNA analysis for rapid detection of actionable mutations to select metastatic colorectal patients for anti-EGFR treatment. Ann Oncol 28:2149–2159

    Article  CAS  PubMed  Google Scholar 

  82. Diaz LA, Williams R, Wu J et al (2012) The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Diaz LA, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti EGFR therapy in colorectal cancer. Nature 486:532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Murtaza M, Dawson S-J, Tsui DW et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  CAS  PubMed  Google Scholar 

  87. Bettegowda C, Sausen M, Leary RL et al (2014) Detection of circulating tumor DNA in early- and late-stage malignancies. Sci Trans Med 6:224ra24. https://doi.org/10.1126/scitranslmed.3007094

    Article  CAS  Google Scholar 

  88. Singh AP, Li S, Cheng H (2017) Circulating DNA in EGFR-mutated lung cancer. Ann Transl Med 5:379. https://doi.org/10.21037/atm.2017.07.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dawson S-J, Tsui DWY, Murtaza M et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368:1199–1209

    Article  CAS  PubMed  Google Scholar 

  90. Sirera R, Bremnes RM, Cabrera A et al (2011) Circulating DNA is a useful prognostic factor in patients with advanced non-small cell lung cancer. J Thorac Oncol 6:286–290

    Article  PubMed  Google Scholar 

  91. Tissot C, Toffart A-C, Villar S et al (2015) Circulating free DNA concentration is an independent prognostic biomarker in lung cancer. Eur Respir J 46:1773–1780

    Article  CAS  PubMed  Google Scholar 

  92. Sunami E, Shinozaki M, Higano CS et al (2009) Multimarker circulating DNA assay for assessing blood of prostate cancer patients. Clin Chem 55:559–567

    Article  CAS  PubMed  Google Scholar 

  93. Singh N, Gupta S, Pandey RM et al (2015) High levels of cell-free circulating nucleic acids in pancreatic cancer are associated with vascular encasement, metastasis and poor survival. Cancer Investig 33:78–85

    Article  CAS  Google Scholar 

  94. Gootenberg JS, Abudayyeh OO, Kellner MJ et al (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science 360:439–444. https://doi.org/10.1126/science.aaq0179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gröbner SN, Worst BC, Weischenfeldt J et al (2018) The landscape of genomic alterations across childhood cancers. Nature 555:321–327

    Article  PubMed  CAS  Google Scholar 

  96. Ma X, Yu L, Yanling L et al (2018) Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555:371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gahan, P.B. (2019). Circulating Cell-Free DNA and Cancer Therapy Monitoring: Methods and Potential. In: Casadio, V., Salvi, S. (eds) Cell-free DNA as Diagnostic Markers. Methods in Molecular Biology, vol 1909. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8973-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8973-7_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8972-0

  • Online ISBN: 978-1-4939-8973-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics