Skip to main content

Identification of Cancer Genes Based on De Novo Transposon Insertion Site Analysis Using RNA and DNA Sequencing

  • Protocol
  • First Online:
  • 1779 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1907))

Abstract

Forward genetic insertional mutagenesis screens are used by many labs to identify candidate cancer genes. We and others have used the Sleeping Beauty DNA transposon to generate random mutations within the murine genome that cause cancer. Identification of the insertion sites, either via RNA sequencing or DNA sequencing, is required for cancer gene discovery. Multiple sequencing-based approaches have been utilized to identify locations of transposon insertions within a genome including linker-mediated PCR, RNA-Seq, and Seq capture. Here, a bioinformatics pipeline is presented applicable to both the identification of transposon-generated fusions in RNA-Seq data and the direct identification of transposon insertion sites in DNA sequencing data. We are currently utilizing this method to identify transposon insertions generated by Sleeping Beauty transposase-mediated mobilization of the T2/Onc transposon within the murine genome. With slight modification, this approach is amenable to the identification of any mobile genetic element within any genome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Starr TK et al (2009) A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323(5922):1747–1750

    Article  CAS  Google Scholar 

  2. Pérez-Mancera PA et al (2012) The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486(7402):266

    Article  Google Scholar 

  3. Keng VW et al (2009) A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol 27(3):264

    Article  CAS  Google Scholar 

  4. Rad R et al (2015) A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nat Genet 47(1):47

    Article  CAS  Google Scholar 

  5. Rahrmann EP et al (2013) Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 45(7):756

    Article  CAS  Google Scholar 

  6. Moriarity BS et al (2015) A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet 47(6):615

    Article  CAS  Google Scholar 

  7. Riordan JD et al (2014) Sequencing methods and datasets to improve functional interpretation of sleeping beauty mutagenesis screens. BMC Genomics 15(1):1150

    Article  Google Scholar 

  8. Koudijs MJ et al (2011) High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors. Genome Res 21(12):2181–2189

    Article  CAS  Google Scholar 

  9. Sarver AL et al (2012) TAPDANCE: an automated tool to identify and annotate transposon insertion CISs and associations between CISs from next generation sequence data. BMC Bioinformatics 13(1):154

    Article  Google Scholar 

  10. Brett BT et al (2011) Novel molecular and computational methods improve the accuracy of insertion site analysis in Sleeping Beauty-induced tumors. PLoS One 6(9):e24668

    Article  CAS  Google Scholar 

  11. de Ridder J et al (2006) Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol 2(12):e166

    Article  Google Scholar 

  12. Temiz NA et al (2016) RNA sequencing of Sleeping Beauty transposon-induced tumors detects transposon-RNA fusions in forward genetic cancer screens. Genome Res 26(1):119–129

    Article  CAS  Google Scholar 

  13. Ng SB et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272

    Article  CAS  Google Scholar 

  14. Haas B et al (2017) STAR-Fusion: fast and accurate fusion transcript detection from RNA-Seq. BioRxiv. 120295.

    Google Scholar 

Download references

Acknowledgments

This work was supported by NCI grant R50-CA211249 to Aaron Sarver.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Sarver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sarver, A. (2019). Identification of Cancer Genes Based on De Novo Transposon Insertion Site Analysis Using RNA and DNA Sequencing. In: Starr, T. (eds) Cancer Driver Genes. Methods in Molecular Biology, vol 1907. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8967-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8967-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8966-9

  • Online ISBN: 978-1-4939-8967-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics