Skip to main content

Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors

  • Protocol
  • First Online:
Cancer Driver Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1907))

Abstract

Human cancers often harbor large numbers of somatic mutations. However, only a small proportion of these mutations are expected to contribute to tumor growth and progression. Therefore, determining causal driver mutations and the genes they target is becoming an important challenge in cancer genomics. Here we describe an approach for mapping somatic mutations onto 3D structures of human proteins in complex to identify “driver interfaces.” Our strategy relies on identifying protein-interaction interfaces that are unexpectedly biased toward nonsynonymous mutations, which suggests that these interfaces are subject to positive selection during tumorigenesis, implicating the interacting proteins as candidate drivers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenman C, Stephens P, Smith R et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158. https://doi.org/10.1038/nature05610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shihab HA, Gough J, Cooper DN et al (2013) Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics 29:1504–1510. https://doi.org/10.1093/bioinformatics/btt182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carter H, Chen S, Isik L et al (2009) Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 69:6660–6667. https://doi.org/10.1158/0008-5472.CAN-09-1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Torkamani A, Schork NJ (2008) Prediction of cancer driver mutations in protein kinases. Cancer Res 68:1675–1682. https://doi.org/10.1158/0008-5472.CAN-07-5283

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218. https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tokheim CJ, Papadopoulos N, Kinzler KW et al (2016) Evaluating the evaluation of cancer driver genes. Proc Natl Acad Sci U S A 113:14330–14335. https://doi.org/10.1073/pnas.1616440113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tamborero D, Gonzalez-Perez A, Lopez-Bigas N (2013) OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 29:2238–2244. https://doi.org/10.1093/bioinformatics/btt395

    Article  CAS  PubMed  Google Scholar 

  8. Kamburov A, Lawrence MS, Polak P et al (2015) Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc Natl Acad Sci U S A 112:E5486–E5495. https://doi.org/10.1073/pnas.1516373112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhong Q, Simonis N, Li Q-R et al (2009) Edgetic perturbation models of human inherited disorders. Mol Syst Biol 5:321. https://doi.org/10.1038/msb.2009.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sahni N, Yi S, Zhong Q et al (2013) Edgotype: a fundamental link between genotype and phenotype. Curr Opin Genet Dev 23:649–657. https://doi.org/10.1016/j.gde.2013.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sahni N, Yi S, Taipale M et al (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell 161:647–660. https://doi.org/10.1016/j.cell.2015.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. David A, Razali R, Wass MN, Sternberg MJE (2012) Protein-protein interaction sites are hot spots for disease-associated nonsynonymous SNPs. Hum Mutat 33:359–363. https://doi.org/10.1002/humu.21656

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Wei X, Thijssen B et al (2012) Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat Biotechnol 30:159–164. https://doi.org/10.1038/nbt.2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo Y, Wei X, Das J et al (2013) Dissecting disease inheritance modes in a three-dimensional protein network challenges the “guilt-by-association” principle. Am J Hum Genet 93:78–89. https://doi.org/10.1016/j.ajhg.2013.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaminker JS, Zhang Y, Waugh A et al (2007) Distinguishing cancer-associated missense mutations from common polymorphisms. Cancer Res 67:465–473. https://doi.org/10.1158/0008-5472.CAN-06-1736

    Article  CAS  PubMed  Google Scholar 

  16. Engin HB, Kreisberg JF, Carter H (2016) Structure-based analysis reveals cancer missense mutations target protein interaction interfaces. PLoS One 11:e0152929. https://doi.org/10.1371/journal.pone.0152929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Porta-Pardo E, Garcia-Alonso L, Hrabe T et al (2015) A pan-cancer catalogue of cancer driver protein interaction interfaces. PLoS Comput Biol 11:e1004518. https://doi.org/10.1371/journal.pcbi.1004518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raimondi F, Singh G, Betts MJ et al (2016) Insights into cancer severity from biomolecular interaction mechanisms. Sci Rep 6:34490. https://doi.org/10.1038/srep34490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krogan NJ, Lippman S, Agard DA et al (2015) The cancer cell map initiative: defining the hallmark networks of cancer. Mol Cell 58:690–698. https://doi.org/10.1016/j.molcel.2015.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Betts MJ, Lu Q, Jiang Y et al (2015) Mechismo: predicting the mechanistic impact of mutations and modifications on molecular interactions. Nucleic Acids Res 43:e10. https://doi.org/10.1093/nar/gku1094

    Article  CAS  PubMed  Google Scholar 

  21. Das J, Fragoza R, Lee HR et al (2014) Exploring mechanisms of human disease through structurally resolved protein interactome networks. Mol BioSyst 10:9–17. https://doi.org/10.1039/C3MB70225A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meyer MJ, Das J, Wang X, Yu H (2013) INstruct: a database of high-quality 3D structurally resolved protein interactome networks. Bioinformatics 29:1577–1579. https://doi.org/10.1093/bioinformatics/btt181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mosca R, Céol A, Aloy P (2013) Interactome3D: adding structural details to protein networks. Nat Methods 10:47–53. https://doi.org/10.1038/nmeth.2289

    Article  CAS  PubMed  Google Scholar 

  24. Vázquez M, Valencia A, Pons T (2015) Structure-PPi: a module for the annotation of cancer-related single-nucleotide variants at protein-protein interfaces. Bioinformatics 31:2397–2399. https://doi.org/10.1093/bioinformatics/btv142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hubbard SJ, Thornton JM (1993) “NACCESS”, computer program. Department of Biochemistry and Molecular Biology, University College, London

    Google Scholar 

  26. Tuncbag N, Gursoy A, Keskin O (2009) Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25:1513–1520. https://doi.org/10.1093/bioinformatics/btp240

    Article  CAS  PubMed  Google Scholar 

  27. Tuncbag N, Keskin O, Gursoy A (2010) HotPoint: hot spot prediction server for protein interfaces. Nucleic Acids Res 38:W402–W406. https://doi.org/10.1093/nar/gkq323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu X, Mitchell JC (2011) KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features. Proteins 79:2671–2683. https://doi.org/10.1002/prot.23094

    Article  CAS  PubMed  Google Scholar 

  29. Darnell SJ, Page D, Mitchell JC (2007) An automated decision-tree approach to predicting protein interaction hot spots. Proteins 68:813–823. https://doi.org/10.1002/prot.21474

    Article  CAS  PubMed  Google Scholar 

  30. Darnell SJ, LeGault L, Mitchell JC (2008) KFC Server: interactive forecasting of protein interaction hot spots. Nucleic Acids Res 36:W265–W269. https://doi.org/10.1093/nar/gkn346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide Protein Data Bank. Nat Struct Biol 10:980–980. https://doi.org/10.1038/nsb1203-980

    Article  CAS  PubMed  Google Scholar 

  34. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  35. Martin ACR (2005) Mapping PDB chains to UniProtKB entries. Bioinformatics 21:4297–4301. https://doi.org/10.1093/bioinformatics/bti694

    Article  CAS  PubMed  Google Scholar 

  36. Collins FS, Barker AD (2007) Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci Am 296:50–57

    Article  CAS  PubMed  Google Scholar 

  37. Hudson TJ, Anderson W, Aretz A et al (2010) International network of cancer genome projects. Nature 464:993–998. https://doi.org/10.1038/nature08987

    Article  CAS  PubMed  Google Scholar 

  38. Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. https://doi.org/10.1093/nar/gku1075

    Article  CAS  PubMed  Google Scholar 

  39. Chen H, Zhou H-X (2005) Prediction of solvent accessibility and sites of deleterious mutations from protein sequence. Nucleic Acids Res 33:3193–3199. https://doi.org/10.1093/nar/gki633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen H, Zhou H-X, Hu X, Yoo I (2004) Classification comparison of prediction of solvent accessibility from protein sequences. In: Chen Y.-P.P. Proceedings of second conference Asia-Pacific bioinformatics 29. Australian Computer Society, Inc., Dunedin pp 333–338

    Google Scholar 

  41. Miller S, Janin J, Lesk AM, Chothia C (1987) Interior and surface of monomeric proteins. J Mol Biol 196:641–656

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Zhang T, Chen K et al (2009) On the relation between residue flexibility and local solvent accessibility in proteins. Proteins 76:617–636. https://doi.org/10.1002/prot.22375

    Article  CAS  PubMed  Google Scholar 

  43. Douville C, Carter H, Kim R et al (2013) CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics 29:647–648. https://doi.org/10.1093/bioinformatics/btt017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cingolani P, Platts A, Wang LL et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92. https://doi.org/10.4161/fly.19695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Carter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ozturk, K., Carter, H. (2019). Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors. In: Starr, T. (eds) Cancer Driver Genes. Methods in Molecular Biology, vol 1907. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8967-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8967-6_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8966-9

  • Online ISBN: 978-1-4939-8967-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics