Skip to main content

PiggyBac Transposon-Based Insertional Mutagenesis in Mice

  • Protocol
  • First Online:
Cancer Driver Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1907))

Abstract

While sequencing and array-based studies are creating catalogues of genetic alterations in cancer, discriminating cancer drivers among the large sets of epigenetically, transcriptionally or posttranslationally dysregulated genes remains a challenge. Transposon-based genetic screening in mice has proven to be a powerful approach to address this challenge. Insertional mutagenesis directly flags biologically relevant genes and, combined with the transposon’s unique molecular fingerprint, facilitates the recovery of insertion sites. We have generated transgenic mouse lines harboring different versions of PiggyBac-based oncogenic transposons, which in conjunction with PiggyBac transposase mice can be used for whole-body or tissue-specific insertional mutagenesis screens. We have also developed QiSeq, a method for (semi-)quantitative transposon insertion site sequencing, which overcomes biasing limitations of previous library preparation methods. QiSeq can be used in multiplexed high-throughput formats for candidate cancer gene discovery and gives insights into the clonal distribution of insertions for the study of genetic tumor evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4):501–510

    Article  CAS  PubMed  Google Scholar 

  2. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483

    Article  CAS  PubMed  Google Scholar 

  3. Ivics Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, Izsvak Z (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6 (6):415–422. doi:nmeth.1332 [pii]. 10.1038/nmeth.1332

    Google Scholar 

  4. Copeland NG, Jenkins NA (2010) Harnessing transposons for cancer gene discovery. Nat Rev Cancer 10 (10):696–706. doi:nrc2916 [pii]. 10.1038/nrc2916

    Google Scholar 

  5. Moriarity BS, Largaespada DA (2015) Sleeping beauty transposon insertional mutagenesis based mouse models for cancer gene discovery. Curr Opin Genet Dev 30:66–72. https://doi.org/10.1016/j.gde.2015.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA (2005) Mammalian mutagenesis using a highly mobile somatic sleeping beauty transposon system. Nature 436(7048):221–226

    Article  CAS  PubMed  Google Scholar 

  7. Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA (2005) Cancer gene discovery using Sleeping Beauty transposon-based somatic mutagenesis in the mouse. Nature 436(7048):272–276

    Article  CAS  PubMed  Google Scholar 

  8. Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos LS, Yusa K, Banerjee R, Li MA, de la Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang FT, Liu P, Bradley A (2010) PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330(6007):1104–1107. https://doi.org/10.1126/science.1193004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li MA, Pettitt SJ, Eckert S, Ning Z, Rice S, Cadinanos J, Yusa K, Conte N, Bradley A (2013) The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol Cell Biol 33(7):1317–1330. https://doi.org/10.1128/MCB.00670-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liang Q, Kong J, Stalker J, Bradley A (2009) Chromosomal mobilization and reintegration of sleeping beauty and PiggyBac transposons. Genesis 47(6):404–408. https://doi.org/10.1002/dvg.20508

    Article  CAS  PubMed  Google Scholar 

  11. Yoshida J, Akagi K, Misawa R, Kokubu C, Takeda J, Horie K (2017) Chromatin states shape insertion profiles of the piggyBac, Tol2 and sleeping beauty transposons and murine leukemia virus. Sci Rep 7:43613. https://doi.org/10.1038/srep43613

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Jong J, Akhtar W, Badhai J, Rust AG, Rad R, Hilkens J, Berns A, van Lohuizen M, Wessels LF, de Ridder J (2014) Chromatin landscapes of retroviral and transposon integration profiles. PLoS Genet 10(4):e1004250. https://doi.org/10.1371/journal.pgen.1004250

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci U S A 105 (27):9290–9295. doi:0801017105 [pii]. 10.1073/pnas.0801017105 [doi]

    Google Scholar 

  14. Li MA, Turner DJ, Ning Z, Yusa K, Liang Q, Eckert S, Rad L, Fitzgerald TW, Craig NL, Bradley A (2011) Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res 39(22):e148. https://doi.org/10.1093/nar/gkr764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Collier LS, Adams DJ, Hackett CS, Bendzick LE, Akagi K, Davies MN, Diers MD, Rodriguez FJ, Bender AM, Tieu C, Matise I, Dupuy AJ, Copeland NG, Jenkins NA, Hodgson JG, Weiss WA, Jenkins RB, Largaespada DA (2009) Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res 69(21):8429–8437. https://doi.org/10.1158/0008-5472.CAN-09-1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berquam-Vrieze KE, Nannapaneni K, Brett BT, Holmfeldt L, Ma J, Zagorodna O, Jenkins NA, Copeland NG, Meyerholz DK, Knudson CM, Mullighan CG, Scheetz TE, Dupuy AJ (2011) Cell of origin strongly influences genetic selection in a mouse model of T-ALL. Blood 118(17):4646–4656. https://doi.org/10.1182/blood-2011-03-343947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rad R, Rad L, Wang W, Strong A, Ponstingl H, Bronner IF, Mayho M, Steiger K, Weber J, Hieber M, Veltkamp C, Eser S, Geumann U, Ollinger R, Zukowska M, Barenboim M, Maresch R, Cadinanos J, Friedrich M, Varela I, Constantino-Casas F, Sarver A, Ten Hoeve J, Prosser H, Seidler B, Bauer J, Heikenwalder M, Metzakopian E, Krug A, Ehmer U, Schneider G, Knosel T, Rummele P, Aust D, Grutzmann R, Pilarsky C, Ning Z, Wessels L, Schmid RM, Quail MA, Vassiliou G, Esposito I, Liu P, Saur D, Bradley A (2015) A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer. Nat Genet 47(1):47–56. https://doi.org/10.1038/ng.3164

    Article  CAS  PubMed  Google Scholar 

  18. Perez-Mancera PA, Rust AG, van der Weyden L, Kristiansen G, Li A, Sarver AL, Silverstein KA, Grutzmann R, Aust D, Rummele P, Knosel T, Herd C, Stemple DL, Kettleborough R, Brosnan JA, Morgan R, Knight S, Yu J, Stegeman S, Collier LS, ten Hoeve JJ, de Ridder J, Klein AP, Goggins M, Hruban RH, Chang DK, Biankin AV, Grimmond SM, Wessels LF, Wood SA, Iacobuzio-Donahue CA, Pilarsky C, Largaespada DA, Adams DJ, Tuveson DA (2012) The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature 486(7402):266–270. https://doi.org/10.1038/nature11114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mann KM, Ward JM, Yew CC, Kovochich A, Dawson DW, Black MA, Brett BT, Sheetz TE, Dupuy AJ, Chang DK, Biankin AV, Waddell N, Kassahn KS, Grimmond SM, Rust AG, Adams DJ, Jenkins NA, Copeland NG (2012) Sleeping beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc Natl Acad Sci U S A 109(16):5934–5941. https://doi.org/10.1073/pnas.1202490109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Friedrich MJ, Rad L, Bronner IF, Strong A, Wang W, Weber J, Mayho M, Ponstingl H, Engleitner T, Grove C, Pfaus A, Saur D, Cadinanos J, Quail MA, Vassiliou GS, Liu P, Bradley A, Rad R (2017) Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nat Protoc 12(2):289–309. https://doi.org/10.1038/nprot.2016.164

    Article  CAS  PubMed  Google Scholar 

  21. Dupuy AJ, Rogers LM, Kim J, Nannapaneni K, Starr TK, Liu P, Largaespada DA, Scheetz TE, Jenkins NA, Copeland NG (2009) A modified sleeping beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res 69 (20):8150–8156. doi:0008-5472.CAN-09-1135 [pii]. 10.1158/0008-5472.CAN-09-1135

    Google Scholar 

  22. Bronner IF, Otto TD, Zhang M, Udenze K, Wang C, Quail MA, Jiang RH, Adams JH, Rayner JC (2016) Quantitative insertion-site sequencing (QIseq) for high throughput phenotyping of transposon mutants. Genome Res 26(7):980–989. https://doi.org/10.1101/gr.200279.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sarver AL, Erdman J, Starr T, Largaespada DA, Silverstein KA (2012) TAPDANCE: an automated tool to identify and annotate transposon insertion CISs and associations between CISs from next generation sequence data. BMC Bioinformatics 13(1):154. https://doi.org/10.1186/1471-2105-13-154

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Ridder J, Uren A, Kool J, Reinders M, Wessels L (2006) Detecting statistically significant common insertion sites in retroviral insertional mutagenesis screens. PLoS Comput Biol 2(12):e166

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brett BT, Berquam-Vrieze KE, Nannapaneni K, Huang J, Scheetz TE, Dupuy AJ (2011) Novel molecular and computational methods improve the accuracy of insertion site analysis in sleeping beauty-induced tumors. PLoS One 6(9):e24668. https://doi.org/10.1371/journal.pone.0024668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bergemann TL, Starr TK, Yu H, Steinbach M, Erdmann J, Chen Y, Cormier RT, Largaespada DA, Silverstein KA (2012) New methods for finding common insertion sites and co-occurring common insertion sites in transposon- and virus-based genetic screens. Nucleic Acids Res 40(9):3822–3833. https://doi.org/10.1093/nar/gkr1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akagi K, Suzuki T, Stephens RM, Jenkins NA, Copeland NG (2004) RTCGD: retroviral tagged cancer gene database. Nucl Acids Res 32(90001):D523–D527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abbott KL, Nyre ET, Abrahante J, Ho YY, Isaksson Vogel R, Starr TK (2015) The candidate cancer gene database: a database of cancer driver genes from forward genetic screens in mice. Nucleic Acids Res 43(Database issue):D844–D848. https://doi.org/10.1093/nar/gku770

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Rad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Friedrich, M.J., Bronner, I.F., Liu, P., Bradley, A., Rad, R. (2019). PiggyBac Transposon-Based Insertional Mutagenesis in Mice. In: Starr, T. (eds) Cancer Driver Genes. Methods in Molecular Biology, vol 1907. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8967-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8967-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8966-9

  • Online ISBN: 978-1-4939-8967-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics