Advertisement

Nanochannel Gradient Separations

  • Michael A. Startsev
  • David W. InglisEmail author
Protocol
  • 574 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1906)

Abstract

Gradient-based electrophoretic separations enable simultaneous separation and concentration of molecules. Compared with conventional injection-based separations, they enable enrichment of low-concentration analytes from larger sample volumes that are not limited by an injection volume. We have demonstrated that a nanochannel, connecting two chemically different reservoirs, can maintain a stationary chemical gradient while trapping biomolecules and effectively averaging out many of the complex physicochemical hydrodynamics that would broaden the bands in a meso- or microscale capillary. Here we describe chemical and physical methods that enable this work.

Key words

Nanofluidic Fabrication Conductivity gradient pH gradient 

References

  1. 1.
    O’Farrell PH (1985) Separation techniques based on the opposition of two counteracting forces to produce a dynamic equilibrium. Science 227(4694):1586–1589CrossRefGoogle Scholar
  2. 2.
    Koegler WS, Ivory CF (1996) Focusing proteins in an electric field gradient. J Chromatogr A 726(1−2):229–236CrossRefGoogle Scholar
  3. 3.
    Startsev MA, Ostrowski M, Goldys EM, Inglis DW (2017) A mobility shift assay for DNA detection using nanochannel gradient electrophoresis. Electrophoresis 38:335–341CrossRefGoogle Scholar
  4. 4.
    Inglis DW, Goldys EM, Calander NP (2011) Simultaneous concentration and separation of proteins in a nanochannel. Angew Chem Int Ed 50(33):7546–7550CrossRefGoogle Scholar
  5. 5.
    Hsu WL, Inglis DW, Jeong H, Dunstan DE, Davidson MR, Goldys EM, Harvie DJE (2014) Stationary chemical gradients for concentration gradient-based separation and focusing in nanofluidic channels. Langmuir 30(18):5337–5348CrossRefGoogle Scholar
  6. 6.
    Hsu WL, Harvie DJE, Davidson MR, Jeong H, Goldys EM, Inglis DW (2014) Concentration gradient focusing and separation in a silica nanofluidic channel with a non-uniform electroosmotic flow. Lab Chip 14(2014):3539–3549CrossRefGoogle Scholar
  7. 7.
    Startsev MA, Inglis DW, Baker MS, Goldys EM (2013) Nanochannel pH gradient electrofocusing of proteins. Anal Chem 85(15):7133–7138CrossRefGoogle Scholar
  8. 8.
    Kern W (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137(6):1887–1892CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of EngineeringMacquarie UniversitySydneyAustralia

Personalised recommendations