Microchip Electrophoresis Tools for the Analysis of Small Molecules

  • Federico J. V. Gomez
  • María Fernanda Silva
Part of the Methods in Molecular Biology book series (MIMB, volume 1906)


Microchip electrophoresis (ME) results from miniaturization of capillary electrophoresis (CE) to a microfabricated separation device. Both techniques have common characteristics, but in some aspects, the microfluidic separation device has unique features resulting from its planar miniaturized format. Here we describe the process to transfer of CE to ME and the benefits and drawbacks of the chip with respect to the capillary. A practical guide for method development on the microchip for small ionizable molecules such as phenolic compounds, amino acids, or alkaloids is also presented.

Key words

Lab-on-a-chip separations Capillary zone electrophoresis Phenolic compounds Indolamines 



This work was supported by funding from the Agencia Nacional de Promoción Científica y Tecnológica, University of Cuyo, and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET).


  1. 1.
    Haddad PR (2015) Editorial on “Present state of microchip electrophoresis: state of the art and routine applications” by Eric R. Castro and Andreas Manz. J Chromatogr A 1382:65CrossRefGoogle Scholar
  2. 2.
    García CD, Henry CS (2003) Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection. Anal Chem 75(18):4778–4783CrossRefGoogle Scholar
  3. 3.
    Nuchtavorn N, Suntornsuk W, Lunte SM, Suntornsuk L (2015) Recent applications of microchip electrophoresis to biomedical analysis. J Pharm Biomed Anal 113:72–96CrossRefGoogle Scholar
  4. 4.
    Saylor RA, Reid EA, Lunte SM (2015) Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway. Electrophoresis 36(16):1912–1919CrossRefGoogle Scholar
  5. 5.
    Gomez FJV, Silva MF (2016) Microchip electrophoresis for wine analysis. Anal Bioanal Chem 408(30):8643–8653CrossRefGoogle Scholar
  6. 6.
    Escarpa A, González MC, Crevillén AG, Blasco AJ (2007) CE microchips: an opened gate to food analysis. Electrophoresis 28(6):1002–1011CrossRefGoogle Scholar
  7. 7.
    Shadpour H, Musyimi H, Chen J, Soper SA (2006) Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance. J Chromatogr A 1111(2):238–251CrossRefGoogle Scholar
  8. 8.
    Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Lüdi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. J Chromatogr A 593(1):253–258CrossRefGoogle Scholar
  9. 9.
    Segato TP, Coltro WKT, de Jesus Almeida AL, de Oliveira Piazetta MH, Gobbi AL, Mazo LH, Carrilho E (2010) A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates. Electrophoresis 31(15):2526–2533CrossRefGoogle Scholar
  10. 10.
    Gabriel EFM, Duarte Junior GF, Garcia PT, de Jesus DP, Coltro WKT (2012) Polyester-toner electrophoresis microchips with improved analytical performance and extended lifetime. Electrophoresis 33(17):2660–2667CrossRefGoogle Scholar
  11. 11.
    Lucio do Lago C, Torres da Silva HD, Neves CA, Alves Brito-Neto JG, Fracassi da Silva JA (2003) A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films. Anal Chem 75(15):3853–3858CrossRefGoogle Scholar
  12. 12.
    Waldbaur A, Rapp H, Lange K, Rapp BE (2011) Let there be chip-towards rapid prototyping of microfluidic devices: one-step manufacturing processes. Anal Methods 3(12):2681–2716CrossRefGoogle Scholar
  13. 13.
    Gabriel EFM, Coltro WKT, Garcia CD (2014) Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis 35(16):2325–2332CrossRefGoogle Scholar
  14. 14.
    Segato TP, Bhakta SA, Gordon MT, Carrilho E, Willis PA, Jiao H, Garcia CD (2013) Microfab-less microfluidic capillary electrophoresis devices. Anal Methods 5(7):1652–1657CrossRefGoogle Scholar
  15. 15.
    Vlcková M (2008) Microchip electrophoresis bioanalytical applications. University of BaselGoogle Scholar
  16. 16.
    Wang J (2002) Electrochemical detection for microscale analytical systems: a review. Talanta 56(2):223–231CrossRefGoogle Scholar
  17. 17.
    Verpoorte E (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23(5):677–712CrossRefGoogle Scholar
  18. 18.
    Lloyd DK (1996) Chapter 7: Sample preparation for capillary electrophoresis. Prog Pharm Biomed Anal 2:309–326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Federico J. V. Gomez
    • 1
  • María Fernanda Silva
    • 1
  1. 1.Instituto de Biología Agrícola de Mendoza (IBAM-CONICET), Facultad de Ciencias AgrariasUniversidad Nacional de CuyoMendozaArgentina

Personalised recommendations