Skip to main content

Genetic Lineage Tracing of Biliary Epithelial Cells

  • Protocol
  • First Online:
Hepatic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1905))

Abstract

Lineage tracing of liver cells is a powerful tool to understand liver embryonic development, healthy liver cell homeostasis, tissue repair, and regeneration. Lineage tracing of biliary epithelial cells (BECs) in the adult liver has been used to assess the contribution of the biliary epithelium to liver injury, regeneration, and disease. These studies have shown the contribution of BECs to the expansion of ductular reaction (DR) and liver progenitor cells (LPCs) and eventually the generation of new hepatocytes. Few genetic lineage-tracing mouse models have been proved to trace BECs. This chapter is focused on lineage tracing of BECs in mouse models of liver injury and regeneration. First, we mention different existing approaches to trace the biliary epithelium based on proteins specifically expressed by BECs such as sex-determining region Y-box 9 (SOX9), osteopontin (OPN), and cytokeratin-19 (KRT19). Second, we describe mouse models that can be used to evaluate cell fate during liver injury and regeneration (i.e., partial hepatectomy (PHx), acute liver injury models, and chronic liver damage models such as 3,5-diethoxycarbonyl-1,4-dihydro-collidin (DDC) diet, choline-deficient ethionine-supplemented (CDE) diet, or chronic carbon tetrachloride (CCl4) administration). Third, we suggest possible readouts to assess BECs fate based on immunofluorescence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arias IM et al (2009) The liver: biology and pathobiology, 5th edn. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  2. Gouw ASH, Clouston AD, Theise ND (2011) Ductular reactions in human liver: diversity at the interface. Hepatology 54(5):1853–1863

    Article  Google Scholar 

  3. Okabe M et al (2009) Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development 136(11):1951–1960

    Article  CAS  Google Scholar 

  4. Kholodenko IV, Yarygin KN (2017) Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. Biomed Res Int 2017:1–17

    Article  Google Scholar 

  5. Lu W-Y et al (2015) Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol 17(8):971–983

    Article  CAS  Google Scholar 

  6. Pu W et al (2016) Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun 7:13369

    Article  CAS  Google Scholar 

  7. Schaub JR, Malato Y, Gormond C, Willenbring H (2014) Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep 8(4):933–939

    Article  CAS  Google Scholar 

  8. Huch M et al (2013) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494(7436):247–250

    Article  CAS  Google Scholar 

  9. Sancho-Bru P et al (2012) Liver progenitor cell markers correlate with liver damage and predict short-term mortality in patients with alcoholic hepatitis. Hepatology 55(6):1931–1941

    Article  CAS  Google Scholar 

  10. Guy CD et al (2012) Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatology 55(6):1711–1721

    Article  CAS  Google Scholar 

  11. Grompe M (2017) Fah knockout animals as models for therapeutic liver repopulation. Springer, Cham, pp 215–230

    Google Scholar 

  12. Carpentier R et al (2011) Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 141(4):1432–1438.e4

    Article  CAS  Google Scholar 

  13. Español-Suñer R et al (2012) Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 143(6):1564–1575.e7

    Article  Google Scholar 

  14. Raven A et al (2017) Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547(7663):350–354

    Article  CAS  Google Scholar 

  15. Yanger K et al (2014) Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15(3):340–349

    Google Scholar 

  16. Guest RV et al (2014) Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma. Cancer Res 74(4):1005–1010

    Article  CAS  Google Scholar 

  17. Rodrigo-Torres D et al (2014) The biliary epithelium gives rise to liver progenitor cells. Hepatology 60(4):1367–1377

    Article  CAS  Google Scholar 

  18. He L et al (2017) Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med 23(12):1488–1498

    Article  CAS  Google Scholar 

  19. Solar M et al (2009) Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 17(6):849–860

    Google Scholar 

  20. Kopp JL et al (2011) Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138:653–665

    Article  CAS  Google Scholar 

  21. Means AL, Xu Y, Zhao A, Ray KC, Gu G (2008) A CK19 CreERT knockin mouse line allows for conditional DNA recombination in epithelial cells in multiple endodermal organs. Genesis 46(6):318–323

    Article  CAS  Google Scholar 

  22. Mitchell C, Willenbring H (2008) A reproducible and well-tolerated method for 2/3 partial hepatectomy in mice. Nat Protoc 3(7):1167–1170

    Article  CAS  Google Scholar 

  23. Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schütz G (1999) Inducible site-specific recombination in the brain. J Mol Biol 285(1):175–182

    Article  CAS  Google Scholar 

  24. Weber LWD, Boll M, Stampfl A (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 33(2):105–136

    Article  CAS  Google Scholar 

  25. Thompson MD, Awuah P, Singh S, Monga SPS (2010) Disparate cellular basis of improved liver repair in β-catenin-overexpressing mice after long-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Am J Pathol 177(4):1812–1822

    Article  CAS  Google Scholar 

  26. Itoh T, Miyajima A (2014) Liver regeneration by stem/progenitor cells. Hepatology 59(4):1617–1626

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We want to thank Daniel Rodrigo-Torres for the advice during manuscript preparation and the experimental work that this chapter is based on. This work was supported by grants from the Fondo de Investigación Sanitaria Carlos III (FIS), co-financed by the Fondo Europeo de Desarrollo Regional (FEDER), Unión Europea, “Una manera de hacer Europa” (FIS PI14/00320, PI 17/00673 to PS-B). PS-B and BA-B are funded by the Instituto de Salud Carlos III, Miguel Servet (CPII16/00041) and PFIS, respectively, and co-financed by the Fondo Europeo de Desarrollo Europeo (FEDER), Unión Europea, “Una manera de hacer Europa.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Sancho-Bru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rubio-Tomás, T., Aguilar-Bravo, B., Sancho-Bru, P. (2019). Genetic Lineage Tracing of Biliary Epithelial Cells. In: Tanimizu, N. (eds) Hepatic Stem Cells . Methods in Molecular Biology, vol 1905. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8961-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8961-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8960-7

  • Online ISBN: 978-1-4939-8961-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics