Skip to main content

Production of Stabilized Antibody Fragments in the E. coli Bacterial Cytoplasm and in Transiently Transfected Mammalian Cells

  • Protocol
  • First Online:
Human Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1904))

Abstract

Monoclonal antibodies (mAbs) are currently the fastest growing class of therapeutic proteins. Parallel to full-length IgG format the development of recombinant technologies provided the production of smaller recombinant antibody variants. The single-chain variable fragment (scFv) antibody is a minimal form of functional antibody comprised of the variable domains of immunoglobulin light and heavy chains connected by a flexible linker. In most cases, scFvs are expressed in the periplasm bacterium E. coli. The production of soluble scFvs is more effective in quantity, however, under the reducing conditions of the E. coli bacterial cytoplasm it is inefficient because of the inability of the disulfide bonds to form. Hence, scFvs are either secreted to the periplasm as soluble proteins or expressed in the cytoplasm as insoluble inclusion bodies and recovered by refolding. The cytoplasmic expression of scFvs as a C-terminal fusion to maltose-binding protein (MBP) provided the high-level production of stable, soluble, and functional fusion protein. The below protocol provides the detailed description of MBP-scFv production in E. coli utilizing two expression systems: pMALc-TNN and pMALc-NHNN. Although the MBP tag does not disrupt the most of antibody activities, the MBP-TNN-scFv product can be cleaved by Tobacco Etch Virus (TEV) protease in order to obtain untagged scFv.

The second protocol is for efficient production of Fab antibody fragments as MBP fusion proteins secreted by transiently transfected mammalian cells. While transient transfection is a fast and effective way of obtaining several mgs of antibody for initial screening and validation of antibodies, some antibody sequences express poorly or not at all. For such antibodies, fusion to MBP provides an effective approach for solving the expression problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagemeyer CE, Ahrens I, Bassler N, Dschachutaschwili N, Chen YC, Eisenhardt SU, Bode C, Peter K (2010) Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage. J Cell Mol Med 14:290–302

    Article  CAS  Google Scholar 

  2. Green LL (1999) Antibody engineering via genetic engineering of the mouse: Xenomouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J Immunol Methods 231:11–23

    Article  CAS  Google Scholar 

  3. Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S, Sato K, Oshimura M, Ishida I (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97:722–727

    Article  CAS  Google Scholar 

  4. Terness P, Welschof M, Moldenhauer G, Jung M, Moroder L, Kirchhoff F, Kipriyanov S, Little M, Opelz G (1997) Idiotypic vaccine for treatment of human B-cell lymphoma. Construction of IgG variable regions from single malignant b cells. Hum Immunol 56:17–27

    Article  CAS  Google Scholar 

  5. Hakim R, Benhar I (2009) “Inclonals”: IgGs and IgG-enzyme fusion proteins produced in an E. coli expression-refolding system. MAbs 1:281–287

    Article  Google Scholar 

  6. Kipriyanov SM (2003) Generation of antibody molecules through antibody engineering. Methods Mol Biol 207:3–25

    CAS  PubMed  Google Scholar 

  7. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242:423–426

    Article  CAS  Google Scholar 

  8. Kim SJ, Park Y, Hong HJ (2005) Antibody engineering for the development of therapeutic antibodies. Mol Cells 20:17–29

    CAS  PubMed  Google Scholar 

  9. Olafsen T, Sirk SJ, Betting DJ, Kenanova VE, Bauer KB, Ladno W, Raubitschek AA, Timmerman JM, Wu AM (2010) Immunopet imaging of B-cell lymphoma using 124i-anti-CD20 scFv dimers (diabodies). Protein Eng Des Sel 23:243–249

    Article  CAS  Google Scholar 

  10. Yokota T, Milenic DE, Whitlow M, Schlom J (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408

    CAS  PubMed  Google Scholar 

  11. Kipriyanov S (2002) High-level periplasmic expression and purification of scFvs. In: O’Brien PM, Aitken R (eds) Antibody phage display, vol 178. Humana Press, New Jersey, pp 333–341

    Chapter  Google Scholar 

  12. Bach H, Mazor Y, Shaky S, Shoham-Lev A, Berdichevsky Y, Gutnick DL, Benhar I (2001) Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J Mol Biol 312:79–93

    Article  CAS  Google Scholar 

  13. Kapust RB, Waugh DS (2000) Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr Purif 19:312–318

    Article  CAS  Google Scholar 

  14. Foti M, Granucci F, Ricciardi-Castagnoli P, Spreafico A, Ackermann M, Suter M (1998) Rabbit monoclonal Fab derived from a phage display library. J Immunol Methods 213:201–212

    Article  CAS  Google Scholar 

  15. Itoh K, Suzuki K, Ishiwata S, Tezuka T, Mizugaki M, Suzuki T (1999) Application of a recombinant Fab fragment from a phage display library for sensitive detection of a target antigen by an inhibition elisa system. J Immunol Methods 223:107–114

    Article  CAS  Google Scholar 

  16. Hexham JM (1998) Production of human Fab antibody fragments from phage display libraries. Methods Mol Biol 80:461–474

    Article  CAS  Google Scholar 

  17. Skerra A (1994) A general vector, pask84, for cloning, bacterial production, and single-step purification of antibody Fab fragments. Gene 141:79–84

    Article  CAS  Google Scholar 

  18. Shaki-Loewenstein S, Zfania R, Hyland S, Wels WS, Benhar I (2005) A universal strategy for stable intracellular antibodies. J Immunol Methods 303:19–39

    Article  CAS  Google Scholar 

  19. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  Google Scholar 

  20. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R et al (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 85:5879–5883

    Article  CAS  Google Scholar 

  21. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  22. Lei X, Ahn K, Zhu L, Ubarretxena-Belandia I, Li YM (2008) Soluble oligomers of the intramembrane serine protease YqgP are catalytically active in the absence of detergents. Biochemistry 47:11920–11929

    Article  CAS  Google Scholar 

  23. Nomine Y, Ristriani T, Laurent C, Lefevre JF, Weiss E, Trave G (2001) Formation of soluble inclusion bodies by HPV E6 oncoprotein fused to maltose-binding protein. Protein Expr Purif 23:22–32

    Article  CAS  Google Scholar 

  24. Zanier K, Nomine Y, Charbonnier S, Ruhlmann C, Schultz P, Schweizer J, Trave G (2007) Formation of well-defined soluble aggregates upon fusion to MBP is a generic property of E6 proteins from various human papillomavirus species. Protein Expr Purif 51:59–70

    Article  CAS  Google Scholar 

  25. Gal-Tanamy M, Zemel R, Berdichevsky Y, Bachmatov L, Tur-Kaspa R, Benhar I (2005) HCV NS3 serine protease-neutralizing single-chain antibodies isolated by a novel genetic screen. J Mol Biol 347:991–1003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Benhar .

Editor information

Editors and Affiliations

Appendix: Sequences of Plasmids (Complete Sequences Are Available from the Authors Upon Request)

Appendix: Sequences of Plasmids (Complete Sequences Are Available from the Authors Upon Request)

The sequence of pMALc2 from NEB is available at: https://international.neb.com/-/media/nebus/page-images/tools-and-resources/interactive-tools/dna-sequences-and-maps/text-documents/pmalc2gbk.txt?la=en

  1. 1.

    pMALc-TNN-scFv35 (the cloned scFv is an anti HCV NS3 protease scFv that was earlier described [25]. To create pMALc-TNN-scFv35, insert the following sequence between coordinates 2676 to 2727 of pMALc2. In the sequence below, the scFv (including the C-terminal His tag and Myc tag) is cloned between positions 31 to 847.

    tccGAGaacCTCtacTTCcagTccatggccGAGGTCCAGCTGCAGCAATCTGGAGCAGAGCTTGTGAGGTCAGGGGCCTCAGTCAAGTTGTCCTGCACAGCTTCTGGCTTCAACATTAAAGACTACTATATGCACTGGGTGAAGCAGAGGCCTGAACAGGGCCTGGAGTGGATTGGATGGATTGATCCTGAGAATGGTGATACTGAATACACTCAGAAGTTCAAGGGCAAGGCCACATTGACTGCAGATAAATCCCCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGAATTACTACGGATTACTACTTTGACTACTGGGGCCAAGGCACCACGCTCACCGTCTCCTCGggaggtggtggatccggcggtggcggttctggtggaggtggatctGATGTTGTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGATCTAGTCAGAGCCTTGTACATAGTAATGGAAACACCTATTTAGAATGGTACCTGCAGAAACCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCTCTCACGTTCGGTGCTGGGACCAAACTGGAGATCAAACGGgcggccgcACATCATCATCACCATCACGGGGCCGCAGAACAAAAACTCATcTCAGAAGAGGATCTGAATggggccgcaT

  2. 2.

    To create pMALc-NHNN-scFv35 (the cloned scFv is an anti HCV NS3 protease scFv that was described in [25]. To create pMALc-NHNN-scFv35, insert the following sequence between coordinates 1524 to 2723 of pMALc2. In the sequence below, there is a His tag before the MBP ORF is between positions 7 to 24. The scFv (including the C-terminal His tag and Myc tag) is cloned between positions 1186 to 1950.

    catatgCACCATCACCATCACCATtccggcAAAACTGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCAcTatggAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTAATTCGAGCTCggtaccgtcctctctcgtgatcgagggtaggcctgaattcagtaccatggccGAGGTCCAGCTGCAGCAATCTGGAGCAGAGCTTGTGAGGTCAGGGGCCTCAGTCAAGTTGTCCTGCACAGCTTCTGGCTTCAACATTAAAGACTACTATATGCACTGGGTGAAGCAGAGGCCTGAACAGGGCCTGGAGTGGATTGGATGGATTGATCCTGAGAATGGTGATACTGAATACACTCAGAAGTTCAAGGGCAAGGCCACATTGACTGCAGATAAATCCCCCAGCACAGCCTACATGCAACTGAGCAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGAATTACTACGGATTACTACTTTGACTACTGGGGCCAAGGCACCACGCTCACCGTCTCCTCGggaggtggtggatccggcggtggcggttctggtggaggtggatctGATGTTGTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCATCTCTTGCAGATCTAGTCAGAGCCTTGTACATAGTAATGGAAACACCTATTTAGAATGGTACCTGCAGAAACCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCTCTCACGTTCGGTGCTGGGACCAAACTGGAGATCAAACGGgcggccgcagactacaaggact

    The sequence of plasmid pcDNA3.1 is available at: https://www.ncbi.nlm.nih.gov/nuccore/EF550208.1

  3. 3.

    To create pcDNA3.4-Fd-His (an expression vector for an antibody Fd domain with a C-terminal His tag), insert the following sequence between coordinates 820 to 2912 of pcDNA3.1. (The resulting pcDNA3.4-Fd-His carries the cloned VH-CH1 is of the therapeutic monoclonal anti TNFα antibody Infliximab). In the sequence below, the secretion leader sequence ORF spans positions 147 to 203. The Fd (VH+CH1) (including a C-terminal His tag and stop codon) spans positions 204 to 911. In the sequence shown herein, the His tag and stop codon were inserted between the end of the human Gamma1 CH1 to the hinge region (spanning positions 882 to 908). Upon removal of the sequence spanning positions 882 to 911, a full human IgG1 heavy chain ORF will be restored.

    GTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGGACTCTAGAGGATCGAACCCTTGGATCTCTAGCGAATTCCCTCTAGACACAGACGCTCACCATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTGAAGTGAAGCTTGAGGAGTCTGGAGGAGGCTTGGTGCAACCTGGAGGATCCATGAAACTCTCCTGTGTTGCCTCTGGATTCATTTTCAGTAACCACTGGATGAACTGGGTCCGCCAGTCTCCAGAGAAGGGGCTTGAGTGGGTTGCTGAAATTAGATCAAAATCTATTAATTCTGCAACACATTATGCGGAGTCTGTGAAAGGGAGGTTCACCATCTCAAGAGATGATTCCAAAAGTGCTGTGTACCTGCAAATGACCGACTTAAGAACTGAAGACACTGGCGTTTATTACTGTTCCAGGAATTACTACGGTAGTACCTACGACTACTGGGGCCAAGGCACCACTCTCACAGTGTCCTCCgctAGCaccaagggcccatcggtcTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTggcggctcccatcaccatcaccatcacTGAGAGCCCAAATCTTGtGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAaCCATCtCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACACCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACAcGCAGAAGAGCCTCTCCCTGTCCCCGGGTAAAtgAGCGGCCGCTCGAGGCCGGCAAGGCCGGATCCCCCGACCTCGACAAGGGTTCGATCCCTACCGGTTAGTAATGAGTTTGATATCTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGGAAACGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCCATAGCAGATCTGCGCAGCTGGGGCTCTAGGGGGTATCCCCACGCGCC

  4. 4.

    To create pcDNA3.4-MBP-Fd-His insert the following sequence between positions 837 to 840 of pcDNA3.4-Fd-His. (the cloned VH-CH1 is of the therapeutic monoclonal anti TNFα antibody Infliximab). In the sequence below is the MBP ORF.

    AAAACTGAAGAAGGTAAACTGGTAATCTGGATTAACGGCGATAAAGGCTATAACGGTCTCGCTGAAGTCGGTAAGAAATTCGAGAAAGATACCGGAATTAAAGTCACCGTTGAGCATCCGGATAAACTGGAAGAGAAATTCCCACAGGTTGCGGCAACTGGCGATGGCCCTGACATTATCTTCTGGGCACACGACCGCTTTGGTGGCTACGCTCAATCTGGCCTGTTGGCTGAAATCACCCCGGACAAAGCGTTCCAGGACAAGCTGTATCCGTTTACCTGGGATGCCGTACGTTACAACGGCAAGCTGATTGCTTACCCGATCGCTGTTGAAGCGTTATCGCTGATTTATAACAAAGATCTGCTGCCGAACCCGCCAAAAACCTGGGAAGAGATCCCGGCGCTGGATAAAGAACTGAAAGCGAAAGGTAAGAGCGCGCTGATGTTCAACCTGCAAGAACCGTACTTCACCTGGCCGCTGATTGCTGCTGACGGGGGTTATGCGTTCAAGTATGAAAACGGCAAGTACGACATTAAAGACGTGGGCGTGGATAACGCTGGCGCGAAAGCGGGTCTGACCTTCCTGGTTGACCTGATTAAAAACAAACACATGAATGCAGACACCGATTACTCCATCGCAGAAGCTGCCTTTAATAAAGGCGAAACAGCGATGACCATCAACGGCCCGTGGGCATGGTCCAACATCGACACCAGCAAAGTGAATTATGGTGTAACGGTACTGCCGACCTTCAAGGGTCAACCATCCAAACCGTTCGTTGGCGTGCTGAGCGCAGGTATTAACGCCGCCAGTCCGAACAAAGAGCTGGCGAAAGAGTTCCTCGAAAACTATCTGCTGACTGATGAAGGTCTGGAAGCGGTTAATAAAGACAAACCGCTGGGTGCCGTAGCGCTGAAGTCTTACGAGGAAGAGTTGGCGAAAGATCCACGTATTGCCGCCAcTatggAAAACGCCCAGAAAGGTGAAATCATGCCGAACATCCCGCAGATGTCCGCTTTCTGGTATGCCGTGCGTACTGCGGTGATCAACGCCGCCAGCGGTCGTCAGACTGTCGATGAAGCCCTGAAAGACGCGCAGACTAATTCGAGCTCggtaccgtcctctctcgtgatcgagggtaggcctgaattcagtaccatggcc

  5. 5.

    To create pcDNA3.4-IFX-Kappa (an expression vector for a Kappa light chain. The cloned Kappa light chain is of the chimeric therapeutic monoclonal anti TNFα antibody Infliximab) insert the following sequence between position 819 to 2907 of pcDNA3.1 In the sequence below, the secretion leader sequence ORF spans positions 122 to 190. The Kappa light chain (mouse Vκ + human Cκ) spans positions 191 to 832.

    GTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGGACTCTAGAGGATCGAACCCTTAGGCAGGACCCAGCATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTACTGCTCTGGCTCCCAGGTGCCAGATGTGCCGACATCTTGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGCAGGGCCAGTCAGTTCGTTGGCTCAAGCATCCACTGGTATCAGCAAAGAACAAATGGTTCTCCAAGGCTTCTCATAAAGTATGCTTCTGAGTCTATGTCTGGGATCCCTTCCAGGTTTAGTGGCAGTGGATCAGGGACAGATTTTACTCTTAGCATCAACACTGTGGAGTCTGAAGATATTGCAGATTATTACTGTCAAGAAAGTCATAGCTGGCCATTCACGTTCGGCTCGGGGACAAATTTGGAAGTAAAACGCACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGTTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGTTAAGGGTTCGATCCCTACCGGTTAGTAATGAGTTTAAACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGGAAACGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCCATAGCAGATCTGCG

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Birnboim-Perach, R., Grinberg, Y., Vaks, L., Nahary, L., Benhar, I. (2019). Production of Stabilized Antibody Fragments in the E. coli Bacterial Cytoplasm and in Transiently Transfected Mammalian Cells. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics