Skip to main content

“BIClonals”: Production of Bispecific Antibodies in IgG Format in Transiently Transfected Mammalian Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1904))

Abstract

Bispecific antibodies (bsAbs) are antibodies with two binding sites directed at different antigens, enabling therapeutic strategies not possible with conventional monoclonal antibodies (mAbs). Since bispecific antibodies are regarded as promising therapeutic agents, many different bispecific design modalities have been evaluated. Many of these are based on antibody fragments or on inclusion of non-antibody components. For some therapeutic applications, full-size, native IgG-like bsAbs may be the optimal format.

To prepare bsAbs in IgG format, two challenges should be met. One is that each heavy chain will only pair with the heavy chain of the second specificity and that heavy chain homodimerization will be prevented. The second is that each heavy chain will only pair with the light chain of its own specificity and that pairing with the light chain of the second specificity will be prevented. The first solution to the first criterion (known as knobs into holes, KIH) was presented in 1996 by Genentech and additional solutions were presented more recently. However, until recently, out of >120 published formats, only a handful of solutions for the second criterion that make it possible to produce a bispecific IgG by a single expressing cell were suggested.

Here, we present a protocol for preparing bsAbs in IgG format in transfected mammalian cells. For heavy chain dimerization we use KIH while as a solution for the second challenge—correct pairing of heavy and light chains of bispecific IgGs we present our “BIClonals” technology; an engineered (artificial) disulfide bond between the antibodies’ variable domains that asymmetrically replaces the natural disulfide bond between CH1 and CL.

During our studies of bsAbs we found that H-L chain pairing seems to be driven by VH-VL interfacial interactions that differ between different antibodies; hence, there is no single optimal solution for effective and precise assembly of bispecific IgGs that suits every antibody sequence, making it necessary to carefully evaluate the optimal solution for each new antibody.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kaplon H, Reichert JM (2018) Antibodies to watch in 2018. mAbs 10:183–203

    Article  CAS  Google Scholar 

  2. Nelson AL, Dhimolea E, Reichert JM (2010) Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov 9:767–774

    Article  CAS  Google Scholar 

  3. Kontermann R (2012) Dual targeting strategies with bispecific antibodies. mAbs 4:182–197

    Article  Google Scholar 

  4. Riethmuller G (2012) Symmetry breaking: bispecific antibodies, the beginnings, and 50 years on. Cancer Immun 12:12–18

    PubMed  PubMed Central  Google Scholar 

  5. Jost C, Plückthun A (2014) Engineered proteins with desired specificity: darpins, other alternative scaffolds and bispecific IgGs. Curr Opin Struct Biol 27C:102–112

    Article  Google Scholar 

  6. Krah S, Sellmann C, Rhiel L, Schroter C, Dickgiesser S, Beck J, Zielonka S, Toleikis L, Hock B, Kolmar H et al (2017) Engineering bispecific antibodies with defined chain pairing. N Biotechnol 39:167–173

    Article  CAS  Google Scholar 

  7. Brinkmann U, Kontermann RE (2017) The making of bispecific antibodies. mAbs 9:182–212

    Article  CAS  Google Scholar 

  8. Fischer N, Leger O (2007) Bispecific antibodies: molecules that enable novel therapeutic strategies. Pathobiology 74:3–14

    Article  CAS  Google Scholar 

  9. Rader C (2011) Darts take aim at bites. Blood 117:4403–4404

    Article  CAS  Google Scholar 

  10. Demarest SJ, Glaser SM (2008) Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr Opin Drug Discov Devel 11:675–687

    CAS  PubMed  Google Scholar 

  11. Dong J, Sereno A, Snyder WB, Miller BR, Tamraz S, Doern A, Favis M, Wu X, Tran H, Langley E et al (2011) Stable IgG-like bispecific antibodies directed toward the type I insulin-like growth factor receptor demonstrate enhanced ligand blockade and anti-tumor activity. J Biol Chem 286:4703–4717

    Article  CAS  Google Scholar 

  12. Klein C, Sustmann C, Thomas M, Stubenrauch K, Croasdale R, Schanzer J, Brinkmann U, Kettenberger H, Regula JT, Schaefer W (2012) Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. mAbs 4:653–663

    Article  Google Scholar 

  13. Schaefer W, Regula JT, Bahner M, Schanzer J, Croasdale R, Durr H, Gassner C, Georges G, Kettenberger H, Imhof-Jung S et al (2011) Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci U S A 108:11187–11192

    Article  CAS  Google Scholar 

  14. Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG, Carter P (1998) An efficient route to human bispecific IgG. Nat Biotechnol 16:677–681

    Article  CAS  Google Scholar 

  15. Lewis SM, Wu X, Pustilnik A, Sereno A, Huang F, Rick HL, Guntas G, Leaver-Fay A, Smith EM, Ho C et al (2014) Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol 32:191–198

    Article  CAS  Google Scholar 

  16. Benhar I, Vaks L. Bi- and monospecific, asymmetric antibodies and methods of generating the same. US patent number US 9,624,291 b2 issued Apr. 18, 2017. Priority date Mar. 15, 2012

    Google Scholar 

  17. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  19. Kabat EA, Wu TT (1991) Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. J Immunol 147:1709–1719

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Studies of bispecific antibodies at the Authors’ lab were supported in part by The Israel Science Foundation (Grant no. 591/13), by a research grant from the Israel Cancer Research fund (ICRF), by a grant from the Israeli National Nanotechnology Initiative (INNI), Focal Technology Area (FTA) program: Nanomedicine for Personalized Theranostics, by The Leona M. and Harry B. Helmsley Nanotechnology Research Fund and by Varda and Boaz Dotan Research Center in Hemato-oncology affiliated to CBRC at Tel-Aviv University. We are grateful to members of the Benhar Lab for their contributions in optimizing the BIClonals technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Benhar .

Editor information

Editors and Affiliations

Appendix: Sequences of Plasmids (Complete Sequences May Be Obtained from the Authors Upon Request)

Appendix: Sequences of Plasmids (Complete Sequences May Be Obtained from the Authors Upon Request)

Below are instructions for designing the set of plasmids required for expression of the Avastin-LC06 bsAb presented here as an example. To create your own bsAbs, replace the variable domains with those of your own antibodies. The plasmid sequences shown here have human gamma1 constant domains (one carrying the Knob mutations and one carrying the “Hole” mutations), a human Kappa light chain that has an engineered Fab arm and a human Lambda light chain which is WT in the Fab arm.

The sequence of plasmid pcDNA3.1 is available at: https://www.ncbi.nlm.nih.gov/nuccore/EF550208.1

  1. 1.

    To create pcDNA3.4-Avastin-VH-(C44)-CH1(C22A)-CH3 (Knob) (an expression vector for the human heavy light chain with the C44 mutation in VH, and C222A mutation in CH1 and Knob mutations in CH3), insert the following sequence between coordinates 819 to 2908 of pcDNA3.1.

    The resulting pcDNA3.4-Avastin-VH-(C44)-CH1(C22A)-CH3 (Hole) carries the cloned VH-CH of the therapeutic monoclonal anti VEGF antibody Avastin (Bevacizumab). This is the heavy chain plasmid with the engineered Fab arm.

    In the sequence below, the secretion leader sequence ORF spans positions 147–203. The VH ORF spans position 204–572. The heavy chain CH1-CH3 domains including the STOP codon span positions 573–1565.

    GTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGGACTCTAGAGGATCGAACCCTTGGATCTCTAGCGAATTCCCTCTAGACACAGACGCTCACCATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTGAAGTGCAGCTGGTGGAATCCGGCGGAGGCCTGGTGCAGCCTGGCGGCTCTCTGAGACTGTCTTGCGCCGCCTCCGGCTACACCTTCACCAACTACGGCATGAACTGGGTCCGACAGGCCCCTGGCAAGTGCCTGGAATGGGTCGGATGGATCAACACCTACACCGGCGAGCCCACCTACGCCGCCGACTTCAAGCGGCGGTTCACCTTCTCCCTGGACACCTCCAAGTCCACCGCCTACCTGCAGATGAACTCCCTGCGGGCCGAGGACACCGCCGTGTACTACTGCGCCAAGTACCCCCACTACTACGGCTCCTCCCACTGGTACTTCGACGTGTGGGGCCAGGGCACCCTGGTCACCGTGTCATCTGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTGCCGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATGCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCCCCGGGTAAAtgAGCGGCCGCTCGAGGCCGGCAAGGCCGGATCCCCCGACCTCGACAAGGGTTCGATCCCTACCGGTTAGTAATGAGTTTGATATCTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGGAAACGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCCATAGCAGATCTGCGC

  2. 2.

    To create pcDNA3.4-Avastin-V-Kappa(C100)-C-Kappa(C218DEL) (an expression vector for the human Kappa light chain with the C100 mutation in V-kappa and C218DEL mutation in C-Kappa), insert the following sequence between coordinates 819–2907 of pcDNA3.1.

    The resulting pcDNA3.4-Avastin-V-Kappa(C100)-C-Kappa(C218DEL) carries the cloned Vκ-Cκ is of the therapeutic monoclonal anti VEGF antibody Avastin (Bevacizumab). This is the light chain plasmid with the engineered Fab arm.

    In the sequence below, the secretion leader sequence ORF spans positions 122–190. The Kappa light chain ORF including the STOP codon spans positions 191–832.

    GTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGGACTCTAGAGGATCGAACCCTTAGGCAGGACCCAGCATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTACTGCTCTGGCTCCCAGGTGCCAGATGTGCCGACATCCAGATGACCCAGTCCCCCTCCAGCCTGTCCGCCTCCGTGGGCGACAGAGTGACCATCACCTGTTCCGCCAGCCAGGACATCTCCAACTACCTGAACTGGTATCAGCAGAAGCCCGGCAAGGCCCCCAAGGTGCTGATCTACTTCACCAGCTCCCTGCACTCCGGCGTGCCCTCCAGATTCTCCGGCTCTGGCTCCGGCACCGACTTCACCCTGACCATCTCCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTCTCCACCGTGCCCTGGACCTTCGGCTGCGGCACCAAGGTGGAAATCAAGCGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTAAGGGTTCGATCCCTACCGGTTAGTAATGAGTTTAAACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGGAAACGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCCATAGCAGATCTGCG

  3. 3.

    To create pcDNA3.4-Lc06-VH-CH3 (Hole) (an expression vector for the human heavy light chain with WT Fab arm and Hole mutations in CH3), insert the following sequence between coordinates 819–2918 of pcDNA3.1.

    The resulting pcDNA3.4-Lc06-VH-CH3 (Hole) carries the cloned VH -CH of the monoclonal anti Ang2 antibody Lc06 [13]. This is the heavy chain plasmid with a WT Fab arm.

    In the sequence below, the secretion leader sequence ORF spans positions 147–203. The VH ORF spans position 204–590. The heavy chain CH1–CH3 domains including the STOP codon span positions 591–1583.

    GTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGGACTCTAGAGGATCGAACCCTTGGATCTCTAGCGAATTCCCTCTAGACACAGACGCTCACCATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGGTCCAGCTGGTGGAATCTGGCGCCGAAGTGAAGAAACCTGGCGCCTCCGTGAAGGTGTCCTGCAAGGCCTCCGGCTACACCTTCACCGGCTACTACATGCACTGGGTCCGACAGGCCCCAGGCCAGGGCCTGGAATGGATGGGCTGGATCAACCCCAACTCCGGCGGCACCAACTACGCCCAGAAATTCCAGGGCAGAGTGACCATGACCCGGGACACCTCCATCTCCACCGCCTACATGGAACTGTCCCGGCTGCGGAGCGACGACACCGCCGTGTACTACTGCGCCCGGTCCCCCAACCCCTACTACTACGACTCCAGCGGCTACTACTACCCTGGCGCCTTCGACATCTGGGGCCAGGGCACAATGGTCACCGTGTCCTCTGCTAGCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTGCACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGAGCTGCGCGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCGTTAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCCCCGGGTAAAtgAGCGGCCGCTCGAGGCCGGCAAGGCCGGATCCCCCGACCTCGACAAGGGTTCGATCCCTACCGGTTAGTAATGAGTTTGATATCTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGGAAACGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCCATAGCAGATCTGCGC

  4. 4.

    To create pcDNA3.4-Lc06-V-Lambda-C-Lambda (an expression vector for the WT human Lambda light chain), insert the following sequence between coordinates 819–2907 of pcDNA3.1.

    The resulting pcDNA3.4-Lc06-V-Lambda-C-Lambda carries the cloned Vλ–Cλ of the monoclonal anti Ang2 antibody Lc06 [13]. This is the light chain plasmid with a WT Fab arm.

    In the sequence below, the secretion leader sequence ORF spans positions 122–190. The Lambda light chain ORF including the STOP codon spans positions 191–835.

    GTTTAGTGAACCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGGACTCTAGAGGATCGAACCCTTAGGCAGGACCCAGCATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTACTGCTCTGGCTCCCAGGTGCCAGATGTGCCCAGCCCGGCCTGACCCAGCCCCCTTCCGTGTCTGTGGCTCCTGGCCAGACCGCCAGAATCACCTGTGGCGGCAACAACATCGGCTCCAAGTCCGTGCACTGGTATCAGCAGAAGCCCGGCCAGGCCCCCGTGCTGGTGGTGTACGACGACTCCGACCGGCCCTCTGGCATCCCTGAGCGGTTCTCCGGCTCCAACAGCGGCAACACCGCCACCCTGACCATCTCCAGAGTGGAAGCCGGCGACGAGGCCGACTACTACTGCCAGGTCTGGGACTCCTCCTCCGACCACTACGTGTTCGGCACCGGCACCAAAGTGACCGTCCTAGGTCAGCCCAAGGCTGCCCCCTCGGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTTCAAGCCAACAAGGCCACACTGGTGTGTCTCATAAGTGACTTCTACCCGGGAGCCGTGACAGTGGCCTGGAAGGCAGATAGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGCCTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTGCAGAATGTTCTTAATAAGGGTTCGATCCCTACCGGTTAGTAATGAGTTTAAACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGGAAACGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAACCCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTTCGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCTTTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGCCATAGCAGATCTGCGC

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Litvak-Greenfeld, D., Vaks, L., Dror, S., Nahary, L., Benhar, I. (2019). “BIClonals”: Production of Bispecific Antibodies in IgG Format in Transiently Transfected Mammalian Cells. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics