Skip to main content

Antibody Fragments Humanization: Beginning with the End in Mind

  • Protocol
  • First Online:
Human Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1904))

Abstract

Molecular engineering has made possible to reformat monoclonal antibodies into smaller antigen-binding structures like scFvs, diabodies, Fabs with new potential in vivo applications because they do not induce Fc-mediated functions. However, most of these molecules are from rodent origin. As a consequence, they are immunogenic and approval for administration to humans requires prior humanization. Today, there is no well-identified strategy to create recombinant humanized antibody V-domains that preserve the antigen-binding characteristics of the parental antibody associated with high stability and solubility. Here, we propose a strategy that consists in grafting CDRs onto properly chosen human antibody frameworks in order to reduce immunogenicity. A flowchart indicates the way to proceed in order to introduce an internal affinity purification tag while structural refinements are proposed to maintain antigen-binding characteristics. The best humanized candidates are identified through selection steps including in silico analysis, research scale production followed by early functional evaluation, purification assays, aggregation, and stability assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarenga LM, De Moura JF, Billiald P (2017) Recombinant antibodies: trends for standardized immunological probes and drugs. In: Current developments in biotechnology and bioengineering. Elsevier Science, Amsterdam, Boston, pp 97–121

    Chapter  Google Scholar 

  2. Nelson AL (2010) Antibody fragments: hope and hype. MAbs 2:77–83

    Article  Google Scholar 

  3. Grodzki AC, Berenstein E (2010) Antibody purification: affinity chromatography – protein A and protein G Sepharose. Methods Mol Biol 588:33–41

    Article  CAS  Google Scholar 

  4. Lakhrif Z, Pugnière M, Henriquet C et al (2016) A method to confer Protein L binding ability to any antibody fragment. MAbs 8:379–388

    Article  CAS  Google Scholar 

  5. Lebozec K, Jandrot-Perrus M, Avenard G et al (2018) Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: a case study prior to pharmaceutical development. New Biotechnol 44:31–40

    Article  CAS  Google Scholar 

  6. Fields C, O’Connell D, Xiao S et al (2013) Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc 8:1125–1148

    Article  Google Scholar 

  7. Schuurman J, Parren PW (2016) Editorial overview: special section: new concepts in antibody therapeutics: what’s in store for antibody therapy? Curr Opin Immunol 40:vii–xiii

    Article  CAS  Google Scholar 

  8. Wagner CL, Schantz A, Barnathan E et al (2003) Consequences of immunogenicity to the therapeutic monoclonal antibodies ReoPro and Remicade. Dev Biol 112:37–53

    CAS  Google Scholar 

  9. Harding FA, Stickler MM, Razo J et al (2010) The immunogenicity of humanized and fully human antibodies. MAbs 2:256–265

    Article  Google Scholar 

  10. Moussa EM, Panchal JP, Moorthy BS et al (2016) Immunogenicity of therapeutic protein aggregates. J Pharm Sci 105:417–430

    Article  CAS  Google Scholar 

  11. Lebozec K, Jandrot-Perrus M, Avenard G et al (2017) Design, development and characterization of ACT017, a humanized Fab that blocks platelet’s glycoprotein VI function without causing bleeding risks. MAbs 9:945–958

    Article  CAS  Google Scholar 

  12. Abhinandan KR, Martin ACR (2007) Analyzing the “degree of humanness” of antibody sequences. J Mol Biol 369:852–862

    Article  CAS  Google Scholar 

  13. Abhinandan KR, Martin ACR (2010) Analysis and prediction of VH/VL packing in antibodies. Protein Eng Des Sel 23:689–697

    Article  CAS  Google Scholar 

  14. Lefranc M-P, Ehrenmann F, Ginestoux C et al (2012) Use of IMGT(®) databases and tools for antibody engineering and humanization. Methods Mol Biol 907:3–37

    Article  CAS  Google Scholar 

  15. Lepore R, Olimpieri PP, Messih MA et al (2017) PIGSPro: prediction of immunoGlobulin structures v2. Nucleic Acids Res 45:W17–W23

    Article  CAS  Google Scholar 

  16. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  CAS  Google Scholar 

  17. Appel RD, Bairoch A, Hochstrasser DF (1994) A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19:258–260

    Article  CAS  Google Scholar 

  18. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152:163–175

    CAS  PubMed  Google Scholar 

  19. Bradbury A, Plückthun A (2015) Reproducibility: standardize antibodies used in research. Nature 518:27–29

    Article  CAS  Google Scholar 

  20. Bradbury ARM, Trinklein ND, Thie H et al (2018) When monoclonal antibodies are not monospecific: hybridomas frequently express additional functional variable regions. mAbs 10(4):539–546

    Article  CAS  Google Scholar 

  21. Ehrenmann F, Lefranc M-P (2011) IMGT/DomainGapAlign: IMGT standardized analysis of amino acid sequences of variable, constant, and groove domains (IG, TR, MH, IgSF, MhSF). Cold Spring Harb Protoc 2011:737–749

    PubMed  Google Scholar 

  22. Riechmann L, Clark M, Waldmann H et al (1988) Reshaping human antibodies for therapy. Nature 332:323–327

    Article  CAS  Google Scholar 

  23. Lefranc M-P, Pommié C, Ruiz M et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol 27:55–77

    Article  CAS  Google Scholar 

  24. Chothia C, Lesk AM, Gherardi E et al (1992) Structural repertoire of the human VH segments. J Mol Biol 227:799–817

    Article  CAS  Google Scholar 

  25. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917

    Article  CAS  Google Scholar 

  26. North B, Lehmann A, Dunbrack RL (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406:228–256

    Article  CAS  Google Scholar 

  27. Gao SH, Huang K, Tu H et al (2013) Monoclonal antibody humanness score and its applications. BMC Biotechnol 13:55

    Article  CAS  Google Scholar 

  28. Queen C, Schneider WP, Selick HE et al (1989) A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A 86:10029–10033

    Article  CAS  Google Scholar 

  29. Waldmann H, Hale G (2005) CAMPATH: from concept to clinic. Philos Trans R Soc Lond Ser B Biol Sci 360:1707–1711

    Article  CAS  Google Scholar 

  30. Woloschak GE, Krco CJ (1987) Regulation of kappa/lambda immunoglobulin light chain expression in normal murine lymphocytes. Mol Immunol 24:751–757

    Article  CAS  Google Scholar 

  31. Pommié C, Levadoux S, Sabatier R et al (2004) IMGT standardized criteria for statistical analysis of immunoglobulin V-REGION amino acid properties. J Mol Recognit 17:17–32

    Article  Google Scholar 

  32. Swindells MB, Porter CT, Couch M et al (2017) abYsis: integrated antibody sequence and structure-management, analysis, and prediction. J Mol Biol 429:356–364

    Article  CAS  Google Scholar 

  33. Getts DR, Getts MT, McCarthy DP et al (2010) Have we overestimated the benefit of human(ized) antibodies? MAbs 2:682–694

    Article  Google Scholar 

  34. De Groot AS, McMurry J, Moise L (2008) Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 8:620–626

    Article  Google Scholar 

  35. Jawa V, Cousens LP, Awwad M et al (2013) T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol 149:534–555

    Article  CAS  Google Scholar 

  36. Nettleship JE, Flanagan A, Rahman-Huq N et al (2012) Converting monoclonal antibodies into Fab fragments for transient expression in mammalian cells. In: Hartley JL (ed) Protein expression in mammalian cells. Humana Press, Totowa, NJ, pp 137–159

    Chapter  Google Scholar 

  37. Gupta SK, Shukla P (2017) Microbial platform technology for recombinant antibody fragment production: a review. Crit Rev Microbiol 43:31–42

    Article  CAS  Google Scholar 

  38. Raynal B, Lenormand P, Baron B et al (2014) Quality assessment and optimization of purified protein samples: why and how? Microb Cell Fact 13:180

    Article  Google Scholar 

  39. Callis PR (1997) 1La and 1Lb transitions of tryptophan: applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol 278:113–150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Billiald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aubrey, N., Billiald, P. (2019). Antibody Fragments Humanization: Beginning with the End in Mind. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics