Skip to main content

Human Monoclonal Antibodies: The Benefits of Humanization

  • Protocol
  • First Online:
Human Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1904))

Abstract

The major reasons for developing human monoclonal antibodies were to be able to efficiently manipulate their effector functions while avoiding immunogenicity seen with rodent antibodies. Those effector functions involve interactions with the complement system and naturally occurring Fc receptors on diverse blood white cells. Antibody immunogenicity results from the degree to which the host immune system can recognize and react to these therapeutic agents. Thus far, there is still no generally applicable technology guaranteed to render therapeutic antibodies antigenically silent. This is not to say that the task is impossible, but rather that we need to train the immune system to help us. This can be achieved if we take advantage of natural mechanisms by which an individual can be rendered tolerant of “foreign” antigens, and as a corollary minimize the potential immunogenicity of any contaminating protein aggregates, or “aggregates” arising from antibodies complexing with their antigen. I here summarize our efforts to engineer antibodies to harness optimal effector functions, while also minimizing their immunogenicity. Potential avenues to achieve the latte are predicted from classical work showing that monomeric “foreign” immunoglobulins are good tolerogens, while aggregates of immunoglobulins ate intrinsically immunogenic. Consequently, I argue that one solution to the immunogenicity problem lies in ensuring a temporal quantitative advantage of tolerogenic non-cell-bound monomer over the cell-binding immunogenic form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  CAS  Google Scholar 

  2. Steinitz M et al (1977) EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 269(5627):420–422

    Article  CAS  Google Scholar 

  3. Bruggemann M et al (1989) The immunogenicity of chimeric antibodies. J Exp Med 170(6):2153–2157

    Article  CAS  Google Scholar 

  4. Jones PT et al (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321(6069):522–525

    Article  CAS  Google Scholar 

  5. Riechmann L et al (1988) Reshaping human antibodies for therapy. Nature 332(6162):323–327

    Article  CAS  Google Scholar 

  6. Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23(9):1117–1125

    Article  CAS  Google Scholar 

  7. Winter G et al (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    Article  CAS  Google Scholar 

  8. Bruggemann M et al (1989) A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci U S A 86(17):6709–6713

    Article  CAS  Google Scholar 

  9. Clark M (2000) Antibody humanization: a case of the ‘Emperor’s new clothes’? Immunol Today 21(8):397–402

    Article  CAS  Google Scholar 

  10. Chiller JM, Habicht GS, Weigle WO (1970) Cellular sites of immunologic unresponsiveness. Proc Natl Acad Sci U S A 65(3):551–556

    Article  CAS  Google Scholar 

  11. Cobbold SP et al (1984) Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312(5994):548–551

    Article  CAS  Google Scholar 

  12. Neuberger MS, Williams GT, Fox RO (1984) Recombinant antibodies possessing novel effector functions. Nature 312(5995):604–608

    Article  CAS  Google Scholar 

  13. Bruggemann M et al (1989) A matched set of rat/mouse chimeric antibodies. Identification and biological properties of rat H chain constant regions mu, gamma 1, gamma 2a, gamma 2b, gamma 2c, epsilon, and alpha. J Immunol 142(9):3145–3150

    CAS  PubMed  Google Scholar 

  14. Morrison SL et al (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81(21):6851–6855

    Article  CAS  Google Scholar 

  15. Bruggemann M et al (1987) Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 166(5):1351–1361

    Article  CAS  Google Scholar 

  16. Bindon CI et al (1988) Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q. J Exp Med 168(1):127–142

    Article  CAS  Google Scholar 

  17. Bolt S et al (1993) The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur J Immunol 23(2):403–411

    Article  CAS  Google Scholar 

  18. Kuhn C et al (2011) Human CD3 transgenic mice: preclinical testing of antibodies promoting immune tolerance. Sci Transl Med 3(68):68ra10

    Article  Google Scholar 

  19. Friend PJ et al (1999) Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation 68(11):1632–1637

    Article  CAS  Google Scholar 

  20. Keymeulen B et al (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352(25):2598–2608

    Article  CAS  Google Scholar 

  21. Routledge EG et al (1991) A humanized monovalent CD3 antibody which can activate homologous complement. Eur J Immunol 21(11):2717–2725

    Article  CAS  Google Scholar 

  22. Beers SA, Glennie MJ, White AL (2016) Influence of immunoglobulin isotype on therapeutic antibody function. Blood 127(9):1097–1101

    Article  CAS  Google Scholar 

  23. Benjamin RJ et al (1986) Tolerance to rat monoclonal antibodies. Implications for serotherapy. J Exp Med 163(6):1539–1552

    Article  CAS  Google Scholar 

  24. Waldmann H, Adams E, Cobbold S (2008) Reprogramming the immune system: co-receptor blockade as a paradigm for harnessing tolerance mechanisms. Immunol Rev 223:361–370

    Article  CAS  Google Scholar 

  25. Rebello PR et al (1999) Anti-globulin responses to rat and humanized CAMPATH-1 monoclonal antibody used to treat transplant rejection. Transplantation 68(9):1417–1420

    Article  CAS  Google Scholar 

  26. Eichmann K (1973) Idiotype expression and the inheritance of mouse antibody clones. J Exp Med 137(3):603–621

    Article  CAS  Google Scholar 

  27. Somerfield J et al (2010) A novel strategy to reduce the immunogenicity of biological therapies. J Immunol 185(1):763–768

    Article  CAS  Google Scholar 

  28. Feldmann M, Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196

    Article  CAS  Google Scholar 

  29. Jefferis R (2011) Aggregation, immune complexes and immunogenicity. MAbs 3(6):503–504

    Article  Google Scholar 

  30. Joubert MK et al (2012) Highly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responses. J Biol Chem 287(30):25266–25279

    Article  CAS  Google Scholar 

  31. Moussa EM et al (2016) Immunogenicity of therapeutic protein aggregates. J Pharm Sci 105(2):417–430

    Article  CAS  Google Scholar 

  32. Sauerborn M et al (2010) Immunological mechanism underlying the immune response to recombinant human protein therapeutics. Trends Pharmacol Sci 31(2):53–59

    Article  CAS  Google Scholar 

  33. St Clair JB et al (2017) Immunogenicity of Isogenic IgG in Aggregates and Immune Complexes. PLoS One 12(1):e0170556

    Article  Google Scholar 

  34. De Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28(11):482–490

    Article  Google Scholar 

  35. Harding FA et al (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2(3):256–265

    Article  Google Scholar 

  36. Griswold KE, Bailey-Kellogg C (2016) Design and engineering of deimmunized biotherapeutics. Curr Opin Struct Biol 39:79–88

    Article  CAS  Google Scholar 

  37. Nagata S, Pastan I (2009) Removal of B cell epitopes as a practical approach for reducing the immunogenicity of foreign protein-based therapeutics. Adv Drug Deliv Rev 61(11):977–985

    Article  CAS  Google Scholar 

  38. Isaacs JD, Waldmann H (1994) Helplessness as a strategy for avoiding antiglobulin responses to therapeutic monoclonal antibodies. Ther Immunol 1(6):303–312

    CAS  PubMed  Google Scholar 

  39. Gilliland LK et al (1999) Elimination of the immunogenicity of therapeutic antibodies. J Immunol 162(6):3663–3671

    CAS  PubMed  Google Scholar 

  40. Waldmann HF, Gillilkand MK, Graca L (2008) Therapeutic antibodies. Patent US 7,465,790 B2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman Waldmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Waldmann, H. (2019). Human Monoclonal Antibodies: The Benefits of Humanization. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics