Skip to main content

Performing an In Silico Repurposing of Existing Drugs by Combining Virtual Screening and Molecular Dynamics Simulation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1903))

Abstract

Drug repurposing has become one of the most widely used methods that can make drug discovery more efficient and less expensive. Additionally, computational methods such as structure-based drug designing can be utilized to make drug discovery more efficient and more accurate. Now imagine what can be achieved by combining drug repurposing and computational methods together in drug discovery, “in silico repurposing.” In this chapter, we tried to describe a method that combines structure-based virtual screening and molecular dynamics simulation which can find effective compounds among existing drugs that may affect on a specific molecular target. By using molecular docking as a tool for the screening process and then by calculating ligand binding in an active receptor site using scoring functions and inspecting the proper orientation of pharmacophores in the binding site, the potential compounds will be chosen. After that, in order to test the potential compounds in a realistic environment, molecular dynamics simulation and related analysis have to be carried out for separating the false positives and the true positives from each other and finally identifying true “Hit” compounds. It’s good to emphasize that if any of these identified potential compounds turn out to have the efficacy to affect that specific molecular target, it can be taken to the phase 2 clinical trials straightaway.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chong CR, Sullivan DJ Jr (2007) New uses for old drugs. Nature 448(7154):645–646. https://doi.org/10.1038/448645a

    Article  CAS  PubMed  Google Scholar 

  2. Ciociola AA, Cohen LB, Kulkarni P, Gastroenterology FD-RMCotACo (2014) How drugs are developed and approved by the FDA: current process and future directions. Am J Gastroenterol 109(5):620–623. https://doi.org/10.1038/ajg.2013.407

    Article  PubMed  Google Scholar 

  3. Dickson M, Gagnon JP (2004) Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 3(5):417–429. https://doi.org/10.1038/nrd1382

    Article  CAS  PubMed  Google Scholar 

  4. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185. https://doi.org/10.1016/S0167-6296(02)00126-1

    Article  PubMed  Google Scholar 

  5. Ekins S, Williams AJ, Krasowski MD, Freundlich JS (2011) In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today 16(7-8):298–310. https://doi.org/10.1016/j.drudis.2011.02.016

    Article  PubMed  Google Scholar 

  6. Cavalla D (2013) Predictive methods in drug repurposing: gold mine or just a bigger haystack? Drug Discov Today 18(11-12):523–532. https://doi.org/10.1016/j.drudis.2012.12.009

    Article  PubMed  Google Scholar 

  7. Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB (2013) Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci 34(9):508–517. https://doi.org/10.1016/j.tips.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  8. Hodos RA, Kidd BA, Shameer K, Readhead BP, Dudley JT (2016) In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med 8(3):186–210. https://doi.org/10.1002/wsbm.1337

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu Z, Fang H, Reagan K, Xu X, Mendrick DL, Slikker W Jr, Tong W (2013) In silico drug repositioning: what we need to know. Drug Discov Today 18(3-4):110–115. https://doi.org/10.1016/j.drudis.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  10. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935–949. https://doi.org/10.1038/nrd1549

    Article  CAS  PubMed  Google Scholar 

  11. Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Organ Chem 12:2694–2718. https://doi.org/10.3762/bjoc.12.267

    Article  CAS  Google Scholar 

  12. Anderson AC (2003) The process of structure-based drug design. Chem Biol 10(9):787–797

    Article  CAS  PubMed  Google Scholar 

  13. Lounnas V, Ritschel T, Kelder J, McGuire R, Bywater RP, Foloppe N (2013) Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery. Comput Struct Biotechnol J 5:e201302011. https://doi.org/10.5936/csbj.201302011

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kaul PN (1998) Drug discovery: past, present and future. Prog Drug Res 50:9–105

    Article  CAS  PubMed  Google Scholar 

  15. Mandal S, Moudgil M, Mandal SK (2009) Rational drug design. Eur J Pharmacol 625(1-3):90–100. https://doi.org/10.1016/j.ejphar.2009.06.065

    Article  CAS  PubMed  Google Scholar 

  16. Mavromoustakos T, Durdagi S, Koukoulitsa C, Simcic M, Papadopoulos MG, Hodoscek M, Grdadolnik SG (2011) Strategies in the rational drug design. Curr Med Chem 18(17):2517–2530

    Article  CAS  PubMed  Google Scholar 

  17. Wang T, Wu MB, Zhang RH, Chen ZJ, Hua C, Lin JP, Yang LR (2016) Advances in computational structure-based drug design and application in drug discovery. Curr Top Med Chem 16(9):901–916

    Article  CAS  PubMed  Google Scholar 

  18. Marrone TJ, Briggs JM, McCammon JA (1997) Structure-based drug design: computational advances. Annu Rev Pharmacol Toxicol 37:71–90. https://doi.org/10.1146/annurev.pharmtox.37.1.71

    Article  CAS  PubMed  Google Scholar 

  19. Gibbons DL, Pricl S, Posocco P, Laurini E, Fermeglia M, Sun H, Talpaz M, Donato N, Quintas-Cardama A (2014) Molecular dynamics reveal BCR-ABL1 polymutants as a unique mechanism of resistance to PAN-BCR-ABL1 kinase inhibitor therapy. Proc Natl Acad Sci U S A 111(9):3550–3555. https://doi.org/10.1073/pnas.1321173111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rester U (2008) From virtuality to reality - virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel 11(4):559–568

    CAS  PubMed  Google Scholar 

  21. Persidis A (1998) High-throughput screening. Advances in robotics and miniturization continue to accelerate drug lead identification. Nat Biotechnol 16(5):488–489. https://doi.org/10.1038/nbt0598-488

    Article  CAS  PubMed  Google Scholar 

  22. Wilkinson GF, Pritchard K (2015) In vitro screening for drug repositioning. J Biomol Screen 20(2):167–179. https://doi.org/10.1177/1087057114563024

    Article  CAS  PubMed  Google Scholar 

  23. Rollinger JM, Stuppner H, Langer T (2008) Virtual screening for the discovery of bioactive natural products. Prog Drug Res 65(211):213–249

    Google Scholar 

  24. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432(7019):862–865. https://doi.org/10.1038/nature03197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748. https://doi.org/10.1006/jmbi.1996.0897

    Article  CAS  PubMed  Google Scholar 

  28. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins 52(4):609–623. https://doi.org/10.1002/prot.10465

    Article  CAS  PubMed  Google Scholar 

  29. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36(15):1132–1156. https://doi.org/10.1002/jcc.23905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  32. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49(21):6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  33. Ledock. Ledock www.lephar.com

  34. Chang DT, Oyang YJ, Lin JH (2005) MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res 33(Web Server Issue):W233–W238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39(Web Server Issue):W270–W277. https://doi.org/10.1093/nar/gkr366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu P, Nielsen TE, Clausen MH (2015) FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 36(7):422–439. https://doi.org/10.1016/j.tips.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Wang R (2015) Classification of current scoring functions. J Chem Inf Model 55(3):475–482. https://doi.org/10.1021/ci500731a

    Article  CAS  PubMed  Google Scholar 

  38. Huang S-Y, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12(40):12899–12908. https://doi.org/10.1039/C0CP00151A

    Article  CAS  PubMed  Google Scholar 

  39. Jain AN (2006) Scoring functions for protein-ligand docking. Curr Protein Pept Sci 7(5):407–420

    Article  CAS  PubMed  Google Scholar 

  40. Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56(2):235–249. https://doi.org/10.1002/prot.20088

    Article  CAS  PubMed  Google Scholar 

  41. Wang JC, Lin JH (2013) Scoring functions for prediction of protein-ligand interactions. Curr Pharm Des 19(12):2174–2182

    Article  CAS  PubMed  Google Scholar 

  42. Neudert G, Klebe G (2011) DSX: a knowledge-based scoring function for the assessment of protein-ligand complexes. J Chem Inf Model 51(10):2731–2745. https://doi.org/10.1021/ci200274q

    Article  CAS  PubMed  Google Scholar 

  43. Krammer A, Kirchhoff PD, Jiang X, Venkatachalam CM, Waldman M (2005) LigScore: a novel scoring function for predicting binding affinities. J Mol Graph Model 23(5):395–407. https://doi.org/10.1016/j.jmgm.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  44. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46(12):2287–2303. https://doi.org/10.1021/jm0203783

    Article  CAS  PubMed  Google Scholar 

  45. Kalyaanamoorthy S, Chen Y-PP (2011) Structure-based drug design to augment hit discovery. Drug Discov Today 16(17):831–839. https://doi.org/10.1016/j.drudis.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  46. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585. https://doi.org/10.1038/267585a0

    Article  CAS  PubMed  Google Scholar 

  47. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897. https://doi.org/10.1021/ar000033j

    Article  CAS  PubMed  Google Scholar 

  48. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  50. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-y, Pieper U, Sali A (2006) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics 5:Unit-5.6. https://doi.org/10.1002/0471250953.bi0506s15

    Article  PubMed  Google Scholar 

  51. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672. https://doi.org/10.1093/nar/gkj067

    Article  CAS  PubMed  Google Scholar 

  52. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Chem 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  53. Xu W, Lim J, Goh C-Y, Suen JY, Jiang Y, Yau M-K, Wu K-C, Liu L, Fairlie DP (2015) Repurposing registered drugs as antagonists for protease-activated receptor 2. J Chem Inf Model 55(10):2079–2084. https://doi.org/10.1021/acs.jcim.5b00500

    Article  CAS  PubMed  Google Scholar 

  54. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. https://doi.org/10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kumari R, Kumar R, Open Source Drug Discovery C, Lynn A (2014) g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  PubMed  Google Scholar 

  57. Sohraby F, Bagheri M, Aliyar M, Aryapour H (2017) In silico drug repurposing of FDA-approved drugs to predict new inhibitors for drug resistant T315I mutant and wild-type BCR-ABL1: a virtual screening and molecular dynamics study. J Mol Graph Model 74:234–240. https://doi.org/10.1016/j.jmgm.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  58. Sohraby F, Bagheri M, Javaheri Moghadam M, Aryapour H (2017) In silico prediction of new inhibitors for the nucleotide pool sanitizing enzyme, MTH1, using drug repurposing. J Biomol Struct Dyn:1–9. https://doi.org/10.1080/07391102.2017.1365013

    Article  PubMed  Google Scholar 

  59. Aryapour H, Dehdab M, Sohraby F, Bargahi A (2017) Prediction of new chromene-based inhibitors of tubulin using structure-based virtual screening and molecular dynamics simulation methods. Comput Biol Chem 71(Suppl C):89–97. https://doi.org/10.1016/j.compbiolchem.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  60. Mofidifar S, Sohraby F, Bagheri M, Aryapour H (2018) Repurposing existing drugs for new AMPK activators as a strategy to extend lifespan: a computer-aided drug discovery study. Biogerontology 19:133. https://doi.org/10.1007/s10522-018-9744-x

    Article  CAS  PubMed  Google Scholar 

  61. Stierand K, Rarey M (2010) PoseView -- molecular interaction patterns at a glance. J Chem 2(1):P50. https://doi.org/10.1186/1758-2946-2-s1-p50

    Article  Google Scholar 

  62. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134. https://doi.org/10.1093/protein/8.2.127

    Article  CAS  PubMed  Google Scholar 

  63. Wang Z, Sun H, Yao X, Li D, Xu L, Li Y, Tian S, Hou T (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18(18):12964–12975. https://doi.org/10.1039/c6cp01555g

    Article  CAS  PubMed  Google Scholar 

  64. He Z, Zhang J, Shi XH, Hu LL, Kong X, Cai YD, Chou KC (2010) Predicting drug-target interaction networks based on functional groups and biological features. PLoS One 5(3):e9603. https://doi.org/10.1371/journal.pone.0009603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McClendon CL, Kornev AP, Gilson MK, Taylor SS (2014) Dynamic architecture of a protein kinase. Proc Natl Acad Sci U S A 111(43):E4623–E4631. https://doi.org/10.1073/pnas.1418402111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A 108(25):10184–10189. https://doi.org/10.1073/pnas.1103547108

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE (2011) How does a drug molecule find its target binding site? J Am Chem Soc 133(24):9181–9183. https://doi.org/10.1021/ja202726y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This chapter was supported by a grant number 96-1206 from Golestan University, Gorgan, Iran. The knowledge amassed to write this chapter is based on our previous publications [57,58,59,60].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Aryapour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sohraby, F., Bagheri, M., Aryapour, H. (2019). Performing an In Silico Repurposing of Existing Drugs by Combining Virtual Screening and Molecular Dynamics Simulation. In: Vanhaelen, Q. (eds) Computational Methods for Drug Repurposing. Methods in Molecular Biology, vol 1903. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8955-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8955-3_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8954-6

  • Online ISBN: 978-1-4939-8955-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics