Skip to main content

A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources

  • Protocol
  • First Online:
Computational Methods for Drug Repurposing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1903))

Abstract

Drug-target networks have an important role in pharmaceutical innovation, drug lead discovery, and recent drug repositioning tasks. Many different in silico approaches for the identification of new drug-target interactions have been proposed, many of them based on a particular class of machine learning algorithms called kernel methods. These pattern classification algorithms are able to incorporate previous knowledge in the form of similarity functions, i.e., a kernel, and they have been successful in a wide range of supervised learning problems. The selection of the right kernel function and its respective parameters can have a large influence on the performance of the classifier. Recently, multiple kernel learning algorithms have been introduced to address this problem, enabling one to combine multiple kernels into large drug-target interaction spaces in order to integrate multiple sources of biological information simultaneously. The Kronecker regularized least squares with multiple kernel learning (KronRLS-MKL) is a machine learning algorithm that aims at integrating heterogeneous information sources into a single chemogenomic space to predict new drug-target interactions. This chapter describes how to obtain data from heterogeneous sources and how to implement and use KronRLS-MKL to predict new interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Csermely P, Korcsmáros T, Kiss HJM et al (2013) Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 138:333–408

    Article  CAS  Google Scholar 

  2. Ding H, Takigawa I, Mamitsuka H et al (2014) Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform 15:734–747

    Article  Google Scholar 

  3. Rogers DJ, Tanimoto TT (1960) A computer program for classifying plants. Science 132:1115–1118

    Article  CAS  Google Scholar 

  4. Ralaivola L, Swamidass SJ, Saigo H et al (2005) Graph kernels for chemical informatics. Neural Netw 18:1093–1110

    Article  Google Scholar 

  5. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    Article  CAS  Google Scholar 

  6. Yamanishi Y, Kotera M, Kanehisa M et al (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26:i246–i254

    Article  CAS  Google Scholar 

  7. Nascimento ACA, PrudĂȘncio RBC, Costa IG (2016) A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinformatics 17:46

    Article  Google Scholar 

  8. Schölkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press

    Google Scholar 

  9. Schölkopf B, Tsuda K, Vert J-P (2004) Kernel methods in computational biology. MIT Press

    Google Scholar 

  10. Kanehisa M, Araki M, Goto S et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  Google Scholar 

  11. Gunther S, Kuhn M, Dunkel M et al (2007) SuperTarget and matador: resources for exploring drug-target relationships. Nucleic Acids Res 36:D919–D922

    Article  Google Scholar 

  12. Gilson MK, Liu T, Baitaluk M et al (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053

    Article  CAS  Google Scholar 

  13. Kuhn M, Szklarczyk D, Pletscher-Frankild S et al (2013) STITCH 4: integration of protein–chemical interactions with user data. Nucleic Acids Res 42:D401–D407

    Article  Google Scholar 

  14. Wishart DS, Knox C, Guo AC et al (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906

    Article  CAS  Google Scholar 

  15. Pavlidis P, Weston J, Cai J et al (2001) Gene functional classification from heterogeneous data. In: Proceedings of the fifth annual international conference on computational biology—RECOMB ‘01,

    Google Scholar 

  16. Ben-Hur A, Noble WS (2005) Kernel methods for predicting protein-protein interactions. Bioinformatics 21(Suppl 1):i38–i46

    Article  CAS  Google Scholar 

  17. van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27:3036–3043

    Article  CAS  Google Scholar 

  18. Hao M, Bryant SH, Wang Y (2018) Open-source chemogenomic data-driven algorithms for predicting drug–target interactions. Brief Bioinform

    Google Scholar 

  19. Wang Y, Xiao J, Suzek TO et al (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633

    Article  CAS  Google Scholar 

  20. Rupp M, Schneider G (2010) Graph kernels for molecular similarity. Mol Inform 29:266–273

    Article  CAS  Google Scholar 

  21. Klambauer G, Wischenbart M, Mahr M et al (2015) Rchemcpp: a web service for structural analoging in ChEMBL, Drugbank and the connectivity map. Bioinformatics 31:3392–3394

    Article  CAS  Google Scholar 

  22. Kuhn M, Letunic I, Jensen LJ et al (2016) The SIDER database of drugs and side effects. Nucleic Acids Res 44:D1075–D1079

    Article  CAS  Google Scholar 

  23. Lamb J (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  Google Scholar 

  24. Edgar R (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  Google Scholar 

  25. Perlman L, Gottlieb A, Atias N et al (2011) Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol 18:133–145

    Article  CAS  Google Scholar 

  26. Wang K, Sun J, Zhou S et al (2013) Prediction of drug-target interactions for drug repositioning only based on genomic expression similarity. PLoS Comput Biol 9:e1003315

    Article  Google Scholar 

  27. Wang Y-C, Zhang C-H, Deng N-Y et al (2011) Kernel-based data fusion improves the drug-protein interaction prediction. Comput Biol Chem 35:353–362

    Article  CAS  Google Scholar 

  28. Palme J, Hochreiter S, Bodenhofer U (2015) KeBABS: an R package for kernel-based analysis of biological sequences: Fig. 1. Bioinformatics 31:2574–2576

    Article  CAS  Google Scholar 

  29. Perrimon N, Friedman A, Mathey-Prevot B et al (2007) Drug-target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov Today 12:28–33

    Article  CAS  Google Scholar 

  30. Smedley D, Haider S, Durinck S et al (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43:W589–W598

    Article  CAS  Google Scholar 

  31. Ovaska K, Laakso M, Hautaniemi S (2008) Fast gene ontology based clustering for microarray experiments. BioData Min 1:11

    Article  Google Scholar 

  32. Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for large-scale nonlinear programming. SIAM J Optim 9:877–900

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André C. A. Nascimento .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nascimento, A.C.A., PrudĂȘncio, R.B.C., Costa, I.G. (2019). A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources. In: Vanhaelen, Q. (eds) Computational Methods for Drug Repurposing. Methods in Molecular Biology, vol 1903. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8955-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8955-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8954-6

  • Online ISBN: 978-1-4939-8955-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics