Skip to main content

Estimating the Copy Number of Transgenes in Transformed Cotton by Real-Time Quantitative PCR

  • Protocol
  • First Online:
Transgenic Cotton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1902))

Abstract

Transgenic cotton has been widely employed both in commercial cultivation and basic research. It is essential to determine which plants contain the transgene and in how many copies after transgenic cotton plants are generated. A TaqMan quantitative real-time polymerase chain reaction (Tq RT-PCR) method is described here to examine transgene copy number in transgenic cotton plants. The estimation of two transgene elements, the target gene of green fluorescence protein (GFP) and the selective gene of neomycin phosphotransferase II (NPTII), is used as an example to detail each step in Tq RT-PCR procedure, including endogenous reference gene selection, reference plasmid construction, primer-probe design, DNA extraction, real-time PCR, and data analysis. Comparing with traditional Southern hybridization analysis, this method can be used efficiently in screening large number of seedlings of T0 transgenic cotton at early stage of transformation process as well as in identifying transgene homozygotes in a segregation population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ISAAA (2016) Global status of commercialized biotech/GM crops: 2016 ISAAA briefs no 52. ISAAA. Ithaca, NY

    Google Scholar 

  2. Flavell RB (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci U S A 91:3490–3496

    Article  CAS  Google Scholar 

  3. Vaucheret H et al (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659

    Article  CAS  Google Scholar 

  4. Kooter JM et al (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 4:340–347

    Article  CAS  Google Scholar 

  5. Morino K et al (1999) Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. Plant J 17:275–285

    Article  CAS  Google Scholar 

  6. Kohli A et al (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci U S A 95:7203–7208

    Article  CAS  Google Scholar 

  7. Srivastava V et al (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci U S A 96:11117–11121

    Article  CAS  Google Scholar 

  8. Mason G et al (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20

    Article  Google Scholar 

  9. Yang L et al (2005) Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton Mon1445 and Mon531. Transgenic Res 14:817–831

    Article  CAS  Google Scholar 

  10. Yang L et al (2007) Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. J Agric Food Chem 55:15–24

    Article  CAS  Google Scholar 

  11. The Reference in qPCR - Academic & Industrial Information Platform. from http://gene-quantification.info/. Accessed 3 June 2011

  12. La Paz JL et al (2007) Comparison of real-time PCR detection chemistries and cycling modes using Mon810 event-specific assays as model. J Agric Food Chem 55:4312–4318

    Article  CAS  Google Scholar 

  13. Buh Gašparič M et al (2010) Comparison of nine different real-time PCR chemistries for qualitative and quantitative applications in GMO detection. Anal Bioanal Chem 396:2023–2029

    Article  CAS  Google Scholar 

  14. Schneeberger C et al (1995) Quantitative detection of reverse transcriptase-PCR products by means of a novel and sensitive DNA stain. PCR Methods Appl 4:234–238

    Article  CAS  Google Scholar 

  15. Nazarenko I et al (2002) Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res 30:2089–2195

    Article  CAS  Google Scholar 

  16. Sherrill CB et al (2004) Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence. J Am Chem Soc 126:4550–4556

    Article  CAS  Google Scholar 

  17. Nazarenko IA et al (1997) A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res 25:2516–2521

    Article  CAS  Google Scholar 

  18. Liu XK, Hong Y (2007) Q-priming PCR: a quantitative real-time PCR system using a self-quenched BODIPY FL-labeled primer. Anal Biochem 360:154–156

    Article  CAS  Google Scholar 

  19. Kutyavin IV et al (2000) 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28:655–661

    Article  CAS  Google Scholar 

  20. Costa JM et al (2004) Chimeric LNA/DNA probes as a detection system for real-time PCR. Clin Biochem 37:930–932

    Article  CAS  Google Scholar 

  21. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Article  CAS  Google Scholar 

  22. AlleLogic (2003) A breakthrough in PCR technology: AllGlo™ fluorogenic reagents for RT-PCR

    Google Scholar 

  23. Song P, Cai C, Skokut M, Kosegi B, Petolino J (2002) Quantitative real-time PCR as a screening tool for estimating transgene number in WHISKERSTM-derived transgenic maize. Plant Cell Report 20:948–954

    Article  CAS  Google Scholar 

  24. Hernandez M et al (2003) A specific real-time quantitative PCR detection system for event MON810 in maize YieldGard based on the 3′-transgene integration sequence. Transgenic Res 12:179–189

    Article  CAS  Google Scholar 

  25. Baeumler S et al (2006) A real-time quantitative PCR detection method specific to widestrike transgenic cotton (event 281-24-236/3006-210-23). J Agric Food Chem 54:6527–6534

    Article  CAS  Google Scholar 

  26. Li Z, Hansen J, Liu Y, Zemetra R, Berger P (2004) Using real-time PCR to determine transgene copy number in wheat. Plant Mol Biol Report 22:179–188

    Article  CAS  Google Scholar 

  27. Yang L et al (2005) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759–763

    Article  CAS  Google Scholar 

  28. Clive J (2006) Global status of commercialized biotech/GM crops ISAAA brief 35. ISAAA, Ithaca, NY

    Google Scholar 

  29. Subr Z et al (2006) Detection of transgene copy number by analysis of the T1 generation of tobacco plants with introduced P3 gene of potato virus A. Acta Virol 50:135–138

    PubMed  CAS  Google Scholar 

  30. Zhang J et al (2008) Transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Transgenic Res 17:293–306

    Article  CAS  Google Scholar 

  31. Zhang XD et al (2003) Molecular cloning, differential expression, and functional characterization of a family of class I ubiquitin-conjugating enzyme (E2) genes in cotton (Gossypium). Biochim Biophys Acta 1625:269–279

    Article  CAS  Google Scholar 

  32. Zhang Z, Hu J (2007) Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative real-time RT-PCR. Toxicol Sci 95:356–368

    Article  CAS  Google Scholar 

  33. Wei D et al (2008) GMDD: a database of GMO detection methods. BMC Bioinformatics 9(260):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yi, C., Hong, Y. (2019). Estimating the Copy Number of Transgenes in Transformed Cotton by Real-Time Quantitative PCR. In: Zhang, B. (eds) Transgenic Cotton. Methods in Molecular Biology, vol 1902. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8952-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8952-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8951-5

  • Online ISBN: 978-1-4939-8952-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics