Skip to main content

Increasing BBB Permeability via Focused Ultrasound: Current Methods in Preclinical Research

  • Protocol
  • First Online:
Blood-Brain Barrier

Part of the book series: Neuromethods ((NM,volume 142))

Abstract

The tightly regulated permeance of the blood-brain barrier (BBB) greatly limits the range of therapeutic treatment options for central nervous system (CNS) diseases. The use of focused ultrasound (FUS), in conjunction with circulating microbubbles, is a unique approach whereby the transcranial application of acoustic energy, focused within targeted brain areas, can be used to induce a noninvasive, transient, and targeted increase in BBB permeability. This can provide an avenue for the delivery of therapeutic agents from the systemic circulation into the brain. While this approach continues to show great promise and has entered clinical testing, there remains a need for preclinical research to investigate the long-term effects of single and repeated FUS treatment on cerebrovascular health and neurological function, as well the pharmacokinetics of specific drugs following FUS. Additionally, there is a need for improved monitoring strategies that can precisely predict resulting bio-effects. This will allow the continued development of control algorithms that can further increase the safety profile of FUS. Here we will describe two approaches to study FUS-mediated increases in BBB permeability in rodent models: MRI-guided FUS and in vivo two-photon fluorescence microscopy FUS experiments. The goal of this chapter is to outline each procedure, present options for experimental design, and highlight important considerations for the collection and interpretation of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kristensson K, Olsson Y (1971) Uptake of exogenous proteins in mouse olfactory cells. Acta Neuropathol 19:145–154

    Article  CAS  PubMed  Google Scholar 

  3. Nagy Z, Pappius HM, Mathieson G, Hüttner I (1979) Opening of tight junctions in cerebral endothelium. I. Effect of hyperosmolar mannitol infused through the internal carotid artery. J Comp Neurol 185:569–578

    Article  CAS  PubMed  Google Scholar 

  4. Tabatabaei SN, Girouard H, Carret A-S, Martel S (2015) Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J Control Release 206:49–57

    Article  CAS  PubMed  Google Scholar 

  5. Kiyatkin EA, Sharma HS (2009) Permeability of the blood-brain barrier depends on brain temperature. Neuroscience 161:926–939

    Article  CAS  PubMed  Google Scholar 

  6. Man S-M, Ma Y-R, Shang D-S, Zhao W-D, Li B, Guo D-W, Fang W-G, Zhu L, Chen Y-H (2007/4) Peripheral T cells overexpress MIP-1α to enhance its transendothelial migration in Alzheimer’s disease. Neurobiol Aging 28:485–496

    Article  CAS  PubMed  Google Scholar 

  7. Nakamuta S, Endo H, Higashi Y, Kousaka A, Yamada H, Yano M, Kido H (2008) Human immunodeficiency virus type 1 gp120-mediated disruption of tight junction proteins by induction of proteasome-mediated degradation of zonula occludens-1 and -2 in human brain microvascular endothelial cells. J Neurovirol 14:186–195

    Article  CAS  PubMed  Google Scholar 

  8. Karyekar CS, Fasano A, Raje S, Lu R, Dowling TC, Eddington ND (2003) Zonula occludens toxin increases the permeability of molecular weight markers and chemotherapeutic agents across the bovine brain microvessel endothelial cells. J Pharm Sci 92:414–423

    Article  CAS  PubMed  Google Scholar 

  9. Schilling L, Wahl M (1994) Opening of the blood-brain barrier during cortical superfusion with histamine. Brain Res 653:289–296

    Article  CAS  PubMed  Google Scholar 

  10. Tuladhar A, Morshead CM, Shoichet MS (2015) Circumventing the blood–brain barrier: local delivery of cyclosporin A stimulates stem cells in stroke-injured rat brain. J Control Release 215:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–646

    Article  CAS  PubMed  Google Scholar 

  12. Treat LH, Nathan M, Natalia V, Yongzhi Z, Karen T, Kullervo H (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907

    Article  CAS  PubMed  Google Scholar 

  13. Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K (2012) Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol 38:1716–1725

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kovacs Z, Werner B, Rassi A, Sass JO, Martin-Fiori E, Bernasconi M (2014) Prolonged survival upon ultrasound-enhanced doxorubicin delivery in two syngenic glioblastoma mouse models. J Control Release 187:74–82

    Article  CAS  PubMed  Google Scholar 

  15. Mei J, Cheng Y, Song Y, Yang Y, Wang F, Liu Y, Wang Z (2009) Experimental study on targeted methotrexate delivery to the rabbit brain via magnetic resonance imaging-guided focused ultrasound. J Ultrasound Med 28:871–880

    Article  PubMed  Google Scholar 

  16. Fan C-H, Ting C-Y, Liu H-L, Huang C-Y, Hsieh H-Y, Yen T-C, Wei K-C, Yeh C-K (2013) Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 34:2142–2155

    Article  CAS  PubMed  Google Scholar 

  17. Thévenot E, Jordão JF, O’Reilly MA, Markham K, Weng Y-Q, Foust KD, Kaspar BK, Hynynen K, Aubert I (2012) Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther 23:1144–1155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hsu P-H, Wei K-C, Huang C-Y, Wen C-J, Yen T-C, Liu C-L, Lin Y-T, Chen J-C, Shen C-R, Liu H-L (2013) Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound. PLoS One 8:e57682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burgess A, Huang Y, Querbes W, Sah DW, Hynynen K (2012) Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression. J Control Release 163:125–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang S, Olumolade OO, Sun T, Samiotaki G, Konofagou EE (2015) Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Ther 22:104–110

    Article  CAS  PubMed  Google Scholar 

  21. Jordão JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, Hynynen K, Aubert I (2010) Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS One 5:e10549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 340:1085–1090

    Article  CAS  PubMed  Google Scholar 

  23. Kinoshita M, McDannold N, Jolesz FA, Hynynen K (2006) Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A 103:11719–11723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, Hynynen K, Lozano AM (2013) MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol 12:462–468

    Article  PubMed  Google Scholar 

  25. Elias WJ, Lipsman N, Ondo WG, Ghanouni P, Kim YG, Lee W, Schwartz M, Hynynen K, Lozano AM, Shah BB, Huss D, Dallapiazza RF, Gwinn R, Witt J, Ro S, Eisenberg HM, Fishman PS, Gandhi D, Halpern CH, Chuang R, Butts Pauly K, Tierney TS, Hayes MT, Cosgrove GR, Yamaguchi T, Abe K, Taira T, Chang JW (2016) A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 375:730–739

    Article  PubMed  Google Scholar 

  26. Lipsman N, Meng Y, Bethune AJ, Huang Y, Lam B, Masellis M, Herrmann N, Heyn C, Aubert I, Boutet A, Smith GS, Hynynen K, Black SE (2018) Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat Commun 9:2336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, Horodyckid C, Karachi C, Leclercq D, Lafon C, Chapelon J-Y, Capelle L, Cornu P, Sanson M, Hoang-Xuan K, Delattre J-Y, Idbaih A (2016) Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 8:343re2

    Article  PubMed  CAS  Google Scholar 

  28. Vykhodtseva NI, Hynynen K, Damianou C (1995) Histologic effects of high intensity pulsed ultrasound exposure with subharmonic emission in rabbit brain in vivo. Ultrasound Med Biol 21:969–979

    Article  CAS  PubMed  Google Scholar 

  29. Hosseinkhah N, Nazanin H, Goertz DE, Kullervo H (2015) Microbubbles and blood–brain barrier opening: a numerical study on acoustic emissions and wall stress predictions. IEEE Trans Biomed Eng 62:1293–1304

    Article  PubMed  Google Scholar 

  30. Lewin PA, Bjo L (1982) Acoustically induced shear stresses in the vicinity of microbubbles in tissue. J Acoust Soc Am 71:728–734

    Article  Google Scholar 

  31. Wu J (2002) Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells. Ultrasound Med Biol 28:125–129

    Article  PubMed  Google Scholar 

  32. Dayton P, Klibanov A, Brandenburger G, Ferrara K (1999) Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol 25:1195–1201

    Article  CAS  PubMed  Google Scholar 

  33. Apfel RE, Holland CK (1991) Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol 17:179–185

    Article  CAS  PubMed  Google Scholar 

  34. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA, Sheikov N (2006) Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 105:445–454

    Article  CAS  PubMed  Google Scholar 

  35. McDannold N, Vykhodtseva N, Hynynen K (2006) Targeted disruption of the blood – brain barrier with focused ultrasound: association with cavitation activity. Phys Med Biol 51:793

    Article  CAS  PubMed  Google Scholar 

  36. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K (2004) Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30:979–989

    Article  PubMed  Google Scholar 

  37. Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34:1093–1104

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deng J, Jinmu D, Qin H, Feng W, Yingjiang L, Zhibiao W, Zhigang W, Qingtao Z, Bo L, Yuan C (2011) The role of Caveolin-1 in blood–brain barrier disruption induced by focused ultrasound combined with microbubbles. J Mol Neurosci 46:677–687

    Article  PubMed  CAS  Google Scholar 

  39. Sun T, Zhang Y, Power C, Alexander PM, Sutton JT, Aryal M, Vykhodtseva N, Miller EL, McDannold NJ (2017) Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model. Proc Natl Acad Sci U S A 114:E10281–E10290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park J, Aryal M, Vykhodtseva N, Zhang Y-Z, McDannold N (2017) Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release 250:77–85

    Article  CAS  PubMed  Google Scholar 

  41. Liu H-L, Hua M-Y, Chen P-Y, Chu P-C, Pan C-H, Yang H-W, Huang C-Y, Wang J-J, Yen T-C, Wei K-C (2010) Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425

    Article  PubMed  Google Scholar 

  42. Yang F-Y, Wang H-E, Liu R-S, Teng M-C, Li J-J, Lu M, Wei M-C, Wong T-T (2012) Pharmacokinetic analysis of 111In-labeled liposomal doxorubicin in murine glioblastoma after blood-brain barrier disruption by focused ultrasound. PLoS One 7:e45468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG (2018) Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng 2:475–484

    Article  PubMed  Google Scholar 

  44. Stavarache MA, Petersen N, Jurgens EM, Milstein ER, Rosenfeld ZB, Ballon DJ, Kaplitt MG (2018) Safe and stable noninvasive focal gene delivery to the mammalian brain following focused ultrasound. J Neurosurg:1–10. https://doi.org/10.3171/2017.8.JNS17790

  45. Song K-H, Fan AC, Hinkle JJ, Newman J, Borden MA, Harvey BK (2017) Microbubble gas volume: a unifying dose parameter in blood-brain barrier opening by focused ultrasound. Theranostics 7:144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alkins R, Burgess A, Ganguly M, Francia G, Kerbel R, Wels WS, Hynynen K (2013) Focused ultrasound delivers targeted immune cells to metastatic brain tumors. Cancer Res 73:1892–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burgess A, Alison B, Ayala-Grosso CA, Milan G, Jordão JF, Isabelle A, Kullervo H (2011) Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS One 6:e27877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ting C-Y, Fan C-H, Liu H-L, Huang C-Y, Hsieh H-Y, Yen T-C, Wei K-C, Yeh C-K (2012) Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 33:704–712

    Article  CAS  PubMed  Google Scholar 

  49. Baseri B, Choi JJ, Deffieux T, Samiotaki G, Tung Y-S, Olumolade O, Small SA, Morrison B, Konofagou EE (2012) Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles. Phys Med Biol 57:N65–N81

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jordão JF, Thévenot E, Markham-Coultes K, Scarcelli T, Weng Y-Q, Xhima K, O’Reilly M, Huang Y, McLaurin J, Hynynen K, Aubert I (2013) Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound. Exp Neurol 248:16–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Burgess A, Dubey S, Yeung S, Hough O, Eterman N, Aubert I, Hynynen K (2014) Alzheimer disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior. Radiology 273:736–745

    Article  PubMed  Google Scholar 

  52. Leinenga G, Götz J (2015) Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med 7:278ra33

    Article  PubMed  CAS  Google Scholar 

  53. Leinenga G, Götz J (2018) Safety and efficacy of scanning ultrasound treatment of aged APP23 mice. Front Neurosci 12:55

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nisbet RM, Van der Jeugd A, Leinenga G, Evans HT, Janowicz PW, Götz J (2017) Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain 140:1220–1230

    Article  PubMed  PubMed Central  Google Scholar 

  55. O’Reilly MA, Jones RM, Barrett E, Schwab A, Head E Investigation of the safety of focused ultrasound-induced blood-brain barrier opening in a natural canine model of aging. Theranostics. https://doi.org/10.7150/thno.20621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scarcelli T, Jordão JF, O’Reilly MA, Ellens N, Hynynen K, Aubert I (2014) Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice. Brain Stimul 7:304–307

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mooney SJ, Shah K, Yeung S, Burgess A, Aubert I, Hynynen K (2016) Focused ultrasound-induced neurogenesis requires an increase in blood-brain barrier permeability. PLoS One 11:e0159892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    Article  CAS  PubMed  Google Scholar 

  59. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT (2003) Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci U S A 100:1387–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Neumeister A, Wood S, Bonne O, Nugent AC, Luckenbaugh DA, Young T, Bain EE, Charney DS, Drevets WC (2005) Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 57:935–937

    Article  PubMed  Google Scholar 

  61. Sheline YI, Sanghavi M, Mintun MA, Gado MH (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 19:5034–5043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, Bresler M, Burks SR, Frank JA (2017) Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A 114:E75–E84

    Article  CAS  PubMed  Google Scholar 

  63. Silburt J, Lipsman N, Aubert I (2017) Disrupting the blood-brain barrier with focused ultrasound: perspectives on inflammation and regeneration. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1710761114

    Article  CAS  Google Scholar 

  64. Kovacs ZI, Burks SR, Frank JA (2017) Reply to Silburt et al.: concerning sterile inflammation following focused ultrasound and microbubbles in the brain. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1711544114

    Article  CAS  Google Scholar 

  65. McMahon D, Hynynen K (2017) Acute inflammatory response following increased blood-brain barrier permeability induced by focused ultrasound is dependent on microbubble dose. Theranostics 7:3989–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kovacs ZI, Burks SR, Frank JA (2018) Focused ultrasound with microbubbles induces sterile inflammatory response proportional to the blood brain barrier opening: attention to experimental conditions. Theranostics 8:2245–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McMahon D, Hynynen K (2018) Reply to Kovacs et al.: concerning acute inflammatory response following focused ultrasound and microbubbles in the brain. Theranostics 8:2249–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McMahon D, Bendayan R, Hynynen K (2017) Acute effects of focused ultrasound-induced increases in blood-brain barrier permeability on rat microvascular transcriptome. Sci Rep 7:45657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O’Reilly MA, Hough O, Hynynen K (2017) Blood-brain barrier closure time after controlled ultrasound-induced opening is independent of opening volume. J Ultrasound Med 36:475–483

    Article  PubMed  PubMed Central  Google Scholar 

  70. Downs ME, Buch A, Sierra C, Karakatsani ME, Chen S, Konofagou EE, Ferrera VP (2015) Long-term safety of repeated blood-brain barrier opening via focused ultrasound with microbubbles in non-human primates performing a cognitive task. PLoS One 10:e0125911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kobus T, Vykhodtseva N, Pilatou M, Zhang Y, McDannold N (2016) Safety validation of repeated blood-brain barrier disruption using focused ultrasound. Ultrasound Med Biol 42:481–492

    Article  PubMed  Google Scholar 

  72. Jones RM, Deng L, Leung K, McMahon D, O’Reilly MA, Hynynen K (2018) Three-dimensional transcranial microbubble imaging for guiding volumetric ultrasound-mediated blood-brain barrier opening. Theranostics 8:2909–2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang F-Y, Chang W-Y, Chen J-C, Lee L-C, Hung Y-S (2014) Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET. NeuroImage 90:93–98

    Article  CAS  PubMed  Google Scholar 

  74. Horodyckid C, Canney M, Vignot A, Boisgard R, Drier A, Huberfeld G, François C, Prigent A, Santin MD, Adam C, Willer J-C, Lafon C, Chapelon J-Y, Carpentier A (2016) Safe long-term repeated disruption of the blood-brain barrier using an implantable ultrasound device: a multiparametric study in a primate model. J Neurosurg:1–11. https://doi.org/10.3171/2016.3.JNS151635

  75. McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS (2012) Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res 72:3652–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mooney SJ, Nobrega JN, Levitt AJ, Hynynen K (2018) Antidepressant effects of focused ultrasound induced blood-brain-barrier opening. Behav Brain Res 342:57–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McDannold N, Zhang Y, Vykhodtseva N (2017) The effects of oxygen on ultrasound-induced blood-brain barrier disruption in mice. Ultrasound Med Biol 43:469–475

    Article  PubMed  Google Scholar 

  78. Baseri B, Choi JJ, Tung Y-S, Konofagou EE (2010) Multi-modality safety assessment of blood-brain barrier opening using focused ultrasound and definity microbubbles: a short-term study. Ultrasound Med Biol 36:1445–1459

    Article  PubMed  PubMed Central  Google Scholar 

  79. McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K (2005) MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol 31:1527–1537

    Article  PubMed  Google Scholar 

  80. Hynynen K, McDannold N, Sheikov NA, Jolesz FA, Vykhodtseva N (2005) Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. NeuroImage 24:12–20

    Article  PubMed  Google Scholar 

  81. Hynynen K, Jolesz FA (1998) Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 24:275–283

    Article  CAS  PubMed  Google Scholar 

  82. Sun J, Hynynen K (1999) The potential of transskull ultrasound therapy and surgery using the maximum available skull surface area. J Acoust Soc Am 105:2519–2527

    Article  CAS  PubMed  Google Scholar 

  83. Pajek D, Hynynen K (2013) The application of sparse arrays in high frequency transcranial focused ultrasound therapy: a simulation study. Med Phys 40:122901

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hwang JH, Tu J, Brayman AA, Matula TJ, Crum LA (2006) Correlation between inertial cavitation dose and endothelial cell damage in vivo. Ultrasound Med Biol 32:1611–1619

    Article  PubMed  Google Scholar 

  85. O’Reilly MA, Hynynen K (2012) Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology 263:96–106

    Article  PubMed  PubMed Central  Google Scholar 

  86. McDannold N, Vykhodtseva N, Hynynen K (2008) Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol 34:834–840

    Article  PubMed  PubMed Central  Google Scholar 

  87. Goertz DE, Wright C, Hynynen K (2010) Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound. Ultrasound Med Biol 36:916–924

    Article  PubMed  PubMed Central  Google Scholar 

  88. Stapleton S, Goodman H, Zhou Y-Q, Cherin E, Henkelman RM, Burns PN, Foster FS (2009) Acoustic and kinetic behaviour of definity in mice exposed to high frequency ultrasound. Ultrasound Med Biol 35:296–307

    Article  PubMed  Google Scholar 

  89. McDannold N, Zhang Y, Vykhodtseva N (2011) Blood-brain barrier disruption and vascular damage induced by ultrasound bursts combined with microbubbles can be influenced by choice of anesthesia protocol. Ultrasound Med Biol 37:1259–1270

    Article  PubMed  PubMed Central  Google Scholar 

  90. Itani M, Mattrey RF (2012) The effect of inhaled gases on ultrasound contrast agent longevity in vivo. Mol Imaging Biol 14:40–46

    Article  PubMed  Google Scholar 

  91. Mullin L, Gessner R, Kwan J, Kaya M, Borden MA, Dayton PA (2011) Effect of anesthesia carrier gas on in vivo circulation times of ultrasound microbubble contrast agents in rats. Contrast Media Mol Imaging 6:126–131

    Article  CAS  PubMed  Google Scholar 

  92. Bing C, Ladouceur-Wodzak M, Wanner CR, Shelton JM, Richardson JA, Chopra R (2014) Trans-cranial opening of the blood-brain barrier in targeted regions using astereotaxic brain atlas and focused ultrasound energy. J Ther Ultrasound 2:13

    Article  PubMed  PubMed Central  Google Scholar 

  93. O’Reilly MA, Waspe AC, Ganguly M, Hynynen K (2011/4) Focused-ultrasound disruption of the blood-brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate. Ultrasound Med Biol 37:587–594

    Article  PubMed  PubMed Central  Google Scholar 

  94. Marty B, Larrat B, Van Landeghem M, Robic C, Robert P, Port M, Le Bihan D, Pernot M, Tanter M, Lethimonnier F, Mériaux S (2012) Dynamic study of blood – brain barrier closure after its disruption using ultrasound: a quantitative analysis. J Cereb Blood Flow Metab 32:1948–1958

    Article  PubMed  PubMed Central  Google Scholar 

  95. Choi JJ, Pernot M, Small SA, Konofagou EE (2007) Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol 33:95–104

    Article  PubMed  Google Scholar 

  96. Chai W-Y, Chu P-C, Tsai C-H, Lin C-Y, Yang H-W, Lai H-Y, Liu H-L (2018) Image-guided focused-ultrasound CNS molecular delivery: an implementation via dynamic contrast-enhanced magnetic-resonance imaging. Sci Rep 8:4151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wu S-K, Chu P-C, Chai W-Y, Kang S-T, Tsai C-H, Fan C-H, Yeh C-K, Liu H-L (2017) Characterization of different microbubbles in assisting focused ultrasound-induced blood-brain barrier opening. Sci Rep 7:46689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vlachos F, Tung Y-S, Konofagou E (2011) Permeability dependence study of the focused ultrasound-induced blood–brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI. Magn Reson Med 66:821–830

    Article  PubMed  PubMed Central  Google Scholar 

  99. Park J, Zhang Y, Vykhodtseva N, Jolesz FA, McDannold NJ (2012) The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J Control Release 162:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kaya M, Ahishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol 763:369–382

    Article  CAS  PubMed  Google Scholar 

  101. Yang F-Y, Fu W-M, Yang R-S, Liou H-C, Kang K-H, Lin W-L (2007) Quantitative evaluation of focused ultrasound with a contrast agent on blood-brain barrier disruption. Ultrasound Med Biol 33:1421–1427

    Article  PubMed  Google Scholar 

  102. Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ (2008) Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLoS One 3:e2175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Arvanitis CD, Livingstone MS, Vykhodtseva N, McDannold N (2012) Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PLoS One 7:e45783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  CAS  PubMed  Google Scholar 

  106. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50:823–839

    Article  CAS  PubMed  Google Scholar 

  107. So PTC (2001) Two-photon fluorescence light microscopy. In: eLS. John Wiley & Sons, Ltd, Hoboken

    Google Scholar 

  108. Cho EE, Drazic J, Ganguly M, Stefanovic B, Hynynen K (2011) Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening. J Cereb Blood Flow Metab 31:1852–1862

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nhan TQ (2015) Drug delivery to the brain by focused ultrasound and microbubble mediated blood-brain barrier disruption: vascular-level investigation using two-photon fluorescent microscopy. University of Toronto

    Google Scholar 

  110. Burgess A, Nhan T, Moffatt C, Klibanov AL, Hynynen K (2014) Analysis of focused ultrasound-induced blood-brain barrier permeability in a mouse model of Alzheimer’s disease using two-photon microscopy. J Control Release 192:243–248

    Article  CAS  PubMed  Google Scholar 

  111. Nhan T, Burgess A, Cho EE, Stefanovic B, Lilge L, Hynynen K (2013) Drug delivery to the brain by focused ultrasound induced blood-brain barrier disruption: quantitative evaluation of enhanced permeability of cerebral vasculature using two-photon microscopy. J Control Release 172:274–280

    Article  CAS  PubMed  Google Scholar 

  112. Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan W-B (2010) Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5:201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dorand RD, Barkauskas DS, Evans TA, Petrosiute A, Huang AY (2014) Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital 3. https://doi.org/10.4161/intv.29728

    Article  PubMed  PubMed Central  Google Scholar 

  114. Xu H-T, Pan F, Yang G, Gan W-B (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10:549–551

    Article  CAS  PubMed  Google Scholar 

  115. Yan P, Bero AW, Cirrito JR, Xiao Q, Hu X, Wang Y, Gonzales E, Holtzman DM, Lee J-M (2009) Characterizing the appearance and growth of amyloid plaques in APP/PS1 mice. J Neurosci 29:10706–10714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Goldey GJ, Roumis DK, Glickfeld LL, Kerlin AM, Reid RC, Bonin V, Schafer DP, Andermann ML (2014) Removable cranial windows for long-term imaging in awake mice. Nat Protoc 9:2515–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hübener M, Keck T, Knott G, Lee W-CA, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4:1128–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cao VY, Ye Y, Mastwal SS, Lovinger DM, Costa RM, Wang KH (2013) In vivo two-photon imaging of experience-dependent molecular changes in cortical neurons. J Vis Exp. https://doi.org/10.3791/50148

Download references

Acknowledgements

We gratefully acknowledge our funding sources: Canadian Institutes of Health Research (MOP 119312) and the National Institutes of Health (R01 EB003268). The authors would also like to thank Marc Santos for his MATLAB script used to analyze gadolinium contrast enhancement, Shawna Rideout-Gros for her expertise with the cranial windows, and Marcelline Ramcharan for her administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dallan McMahon or Charissa Poon .

Editor information

Editors and Affiliations

Supplementary Materials

Supplementary Materials

Equipment:

  • Surgical scissors*

  • Surgical forceps*

  • Fine surgical forceps*

  • Cotton swabs*

  • Fibreless swabs*

  • Gelfoam

  • Stereotax for rodents

    • Bite bar

    • Ear bars

  • Warming pad

  • Dental drill

  • Micro drill burr* (0.5 mm, Fine Science Tools)

  • Circular cover glass (5, 8, or 12 mm diameter, #1 thickness, Warner Instruments)

  • Drapes*

  • Kimpwipes*

  • Small glass beaker or Petri dish*

  • Spatula*

  • Dissection microscope

  • 1 mL syringe

  • 5 mL syringe

* Autoclave (or use new) if doing sterile surgeries for a chronic cranial window.

Chemicals:

  • Depilatory cream (sensitive)

  • Baby shampoo

  • Warm water

  • Agarose

Drugs:

  • Isoflurane

  • Ketoprofen (5 mg/kg)

  • Carprofen (5 mg/kg)

  • Dexamethasone (0.2 mg/kg)

  • 1% lidocaine

  • Lactated Ringer’s solution, or saline

  • Eye lubrication

  • Topical antibiotic cream

  • Prophylactic antibiotics

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McMahon, D., Poon, C., Hynynen, K. (2019). Increasing BBB Permeability via Focused Ultrasound: Current Methods in Preclinical Research. In: Barichello, T. (eds) Blood-Brain Barrier. Neuromethods, vol 142. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8946-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8946-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8945-4

  • Online ISBN: 978-1-4939-8946-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics