Skip to main content

Experimental Tools to Study the Regulation and Function of the Choroid Plexus

  • Protocol
  • First Online:
Blood-Brain Barrier

Abstract

There is an increasing recognition of the choroid plexus’ (CP) functional relevance for brain homeostasis, and its malfunction has been associated with neurologic diseases, in newborns, young adults, and the elderly, like kernicterus, multiple sclerosis, and Alzheimer’s disease. Yet, the CP still remains an overlooked organ requiring further investigation.

The minute size of the CP, particularly in rodent models, increases the difficulties associated with the implementation of suitable protocols to address the ever-increasing research questions. In recent years we have implemented fundamental methods to study gene expression and function in the CP. These include CP epithelial cell (CPEC) primary cultures; use of CP explants for expression analysis, and electrophysiology and bioluminescence assays; Ca2+ imaging; gene silencing in CP epithelial cell lines; and transport studies across blood-cerebrospinal fluid barrier (BCSFB) in vitro models. This chapter describes these protocols aiming to attract more researchers willing to enhance the current knowledge on CP functions and the relevance of its malfunction to the central nervous system pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strazielle N, Khuth ST, Ghersi-Egea JF (2004) Detoxification systems, passive and specific transport for drugs at the blood-CSF barrier in normal and pathological situations. Adv Drug Deliv Rev 56:1717–1740

    Article  CAS  Google Scholar 

  2. Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56:1695–1716

    Article  CAS  Google Scholar 

  3. Ghersi-Egea JF, Monkkonen KS, Schmitt C et al (2009) Blood-brain interfaces and cerebral drug bioavailability. Rev Neurol (Paris) 165:1029–1038

    Article  Google Scholar 

  4. Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93:1847–1892

    Article  CAS  Google Scholar 

  5. Johanson C, Stopa E, McMillan P et al (2011) The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol 39:186–212

    Article  Google Scholar 

  6. Richardson SJ, Wijayagunaratne RC, D’Souza DG et al (2015) Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters. Front Neurosci 9:66

    Article  Google Scholar 

  7. Spector R, Keep RF, Robert Snodgrass S et al (2015) A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol 267:78–86

    Article  Google Scholar 

  8. Schwartz M, Baruch K (2014) The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 33:7–22

    Article  CAS  Google Scholar 

  9. Pahnke J, Langer O, Krohn M (2014) Alzheimer’s and ABC transporters – new opportunities for diagnostics and treatment. Neurobiol Dis 72(Pt A):54–60

    Article  CAS  Google Scholar 

  10. Pascale CL, Miller MC, Chiu C et al (2011) Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS 8:21

    Article  CAS  Google Scholar 

  11. Krzyzanowska A, Carro E (2012) Pathological alteration in the choroid plexus of Alzheimer’s disease: implication for new therapy approaches. Front Pharmacol 3:75

    Article  Google Scholar 

  12. Falcao AM, Marques F, Novais A et al (2012) The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci 6:34

    Article  Google Scholar 

  13. Johansson PA (2014) The choroid plexuses and their impact on developmental neurogenesis. Front Neurosci 8:340

    Article  Google Scholar 

  14. Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 16:445–457

    Article  CAS  Google Scholar 

  15. Goncalves I, Hubbard PC, Tomas J et al (2016) ‘Smelling’ the cerebrospinal fluid: olfactory signaling molecules are expressed in and mediate chemosensory signaling from the choroid plexus. FEBS J 283:1748–1766

    Article  CAS  Google Scholar 

  16. Tomas J, Santos CR, Quintela T et al (2016) “Tasting” the cerebrospinal fluid: another function of the choroid plexus? Neuroscience 320:160–171

    Article  CAS  Google Scholar 

  17. Quintela T, Sousa C, Patriarca FM et al (2015) Gender associated circadian oscillations of the clock genes in rat choroid plexus. Brain Struct Funct 220:1251–1262

    Article  CAS  Google Scholar 

  18. Santos CR, Duarte AC, Quintela T et al (2017) The choroid plexus as a sex hormone target: functional implications. Front Neuroendocrinol 44:103–121

    Article  CAS  Google Scholar 

  19. Marques F, Sousa JC, Brito MA et al (2017) The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis 107:32–40

    Article  Google Scholar 

  20. Brito MA, Silva RFM, Brites D (2006) Cell response to hyperbilirubinemia: a journey along key molecular events. In: Chen FJ (ed) New trends in brain research. Nova Science Publishers, Inc., New York, pp 1–38

    Google Scholar 

  21. Vercellino M, Votta B, Condello C et al (2008) Involvement of the choroid plexus in multiple sclerosis autoimmune inflammation: a neuropathological study. J Neuroimmunol 199:133–141

    Article  CAS  Google Scholar 

  22. Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001) Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech 52:112–129

    Article  CAS  Google Scholar 

  23. Marques F, Sousa JC, Sousa N et al (2013) Blood-brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener 8:38

    Article  Google Scholar 

  24. Vargas T, Antequera D, Ugalde C et al (2010) Gelsolin restores A beta-induced alterations in choroid plexus epithelium. J Biomed Biotechnol 2010:805405

    Article  Google Scholar 

  25. Quintela T, Alves CH, Goncalves I et al (2008) 5Alpha-dihydrotestosterone up-regulates transthyretin levels in mice and rat choroid plexus via an androgen receptor independent pathway. Brain Res 1229:18–26

    Article  CAS  Google Scholar 

  26. Dinner S, Borkowski J, Stump-Guthier C et al (2016) A choroid plexus epithelial cell-based model of the human blood-cerebrospinal fluid barrier to study bacterial infection from the basolateral side. J Vis Exp. https://doi.org/10.3791/54061

  27. Yoo SH, Yamazaki S, Lowrey PL et al (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101:5339–5346

    Article  CAS  Google Scholar 

  28. Schwerk C, Papandreou T, Schuhmann D et al (2012) Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in a novel human model of the blood-cerebrospinal fluid barrier. PLoS One 7:e30069

    Article  CAS  Google Scholar 

  29. Zheng W, Zhao Q (2002) Establishment and characterization of an immortalized Z310 choroidal epithelial cell line from murine choroid plexus. Brain Res 958:371–380

    Article  CAS  Google Scholar 

  30. Herbert J, Wilcox JN, Pham KT et al (1986) Transthyretin: a choroid plexus-specific transport protein in human brain. The 1986 S. Weir Mitchell award. Neurology 36:900–911

    Article  CAS  Google Scholar 

  31. Ramanathan C, Khan SK, Kathale ND et al (2012) Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters. J Vis Exp. https://doi.org/10.3791/4234

  32. Savelyev SA, Larsson KC, Johansson AS et al (2011) Slice preparation, organotypic tissue culturing and luciferase recording of clock gene activity in the suprachiasmatic nucleus. J Vis Exp. https://doi.org/10.3791/2439

  33. Strazielle N, Ghersi-Egea JF (2011) In vitro models of the blood-cerebrospinal fluid barrier and their use in neurotoxicological research. NeuroMethods 56:161–184

    Google Scholar 

  34. Ishiwata I, Ono I, Kiguchi K et al (2005) Establishment and characterization of a human thyroid carcinoma cell line (HOTHC) producing colony stimulating factor. Hum Cell 18:163–169

    Article  Google Scholar 

  35. Grundler T, Quednau N, Stump C et al (2013) The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood-cerebrospinal fluid barrier. Microbes Infect 15:291–301

    Article  Google Scholar 

  36. Bernd A, Ott M, Ishikawa H et al (2015) Characterization of efflux transport proteins of the human choroid plexus papilloma cell line HIBCPP, a functional in vitro model of the blood-cerebrospinal fluid barrier. Pharm Res 32:2973–2982

    Article  CAS  Google Scholar 

  37. Rasmussen H (1986) The calcium messenger system (1). N Engl J Med 314:1094–1101

    Article  CAS  Google Scholar 

  38. Paredes RM, Etzler JC, Watts LT et al (2008) Chemical calcium indicators. Methods 46:143–151

    Article  CAS  Google Scholar 

  39. Pluznick JL, Zou DJ, Zhang X et al (2009) Functional expression of the olfactory signaling system in the kidney. Proc Natl Acad Sci U S A 106:2059–2064

    Article  CAS  Google Scholar 

  40. Rajkumar P, Aisenberg WH, Acres OW et al (2014) Identification and characterization of novel renal sensory receptors. PLoS One 9:e111053

    Article  Google Scholar 

  41. Grison A, Zucchelli S, Urzi A et al (2014) Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics 15:729

    Article  Google Scholar 

  42. Quintela T, Goncalves I, Carreto LC et al (2013) Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarrays. PLoS One 8:e60199

    Article  CAS  Google Scholar 

  43. Foster SR, Roura E, Thomas WG (2014) Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol Ther 142:41–61

    Article  CAS  Google Scholar 

  44. Kang N, Koo J (2012) Olfactory receptors in non-chemosensory tissues. BMB Rep 45:612–622

    Article  CAS  Google Scholar 

  45. Da Silva JP, Choudhury R, Porel M et al (2014) Synthetic versus natural receptors: supramolecular control of chemical sensing in fish. ACS Chem Biol 9:1432–1436

    Article  Google Scholar 

  46. Michel WC, Sanderson MJ, Olson JK et al (2003) Evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system. J Exp Biol 206:1697–1706

    Article  CAS  Google Scholar 

  47. Rolen SH, Sorensen PW, Mattson D et al (2003) Polyamines as olfactory stimuli in the goldfish Carassius auratus. J Exp Biol 206:1683–1696

    Article  CAS  Google Scholar 

  48. Pinel JP, Gorzalka BB, Ladak F (1981) Cadaverine and putrescine initiate the burial of dead conspecifics by rats. Physiol Behav 27:819–824

    Article  CAS  Google Scholar 

  49. Inoue K, Tsutsui H, Akatsu H et al (2013) Metabolic profiling of Alzheimer’s disease brains. Sci Rep 3:2364

    Article  Google Scholar 

  50. Paik MJ, Ahn YH, Lee PH et al (2010) Polyamine patterns in the cerebrospinal fluid of patients with Parkinson’s disease and multiple system atrophy. Clin Chim Acta 411:1532–1535

    Article  CAS  Google Scholar 

  51. Noga MJ, Dane A, Shi S et al (2012) Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics 8:253–263

    Article  CAS  Google Scholar 

  52. Scott JW, Scott-Johnson PE (2002) The electroolfactogram: a review of its history and uses. Microsc Res Tech 58:152–160

    Article  Google Scholar 

  53. Hubbard PC, Barata EN, Canario AV (2002) Possible disruption of pheromonal communication by humic acid in the goldfish, Carassius auratus. Aquat Toxicol 60:169–183

    Article  CAS  Google Scholar 

  54. Quintela T, Albuquerque T, Lundkvist G et al (2018) The choroid plexus harbors a circadian oscillator modulated by estrogens. Chronobiol Int 35(2):270–279

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT, Portugal—http://www.fct.pt) project grants (PTDC/SAU-NEU/114800/2009, project UID/Multi/04326/2013 and project UID/Multi/00709/2013), and FEDER funds through the POCI—COMPETE 2020—Operational Programme Competitiveness and Internationalization in Axis I—Strengthening research, technological development and innovation (Project POCI-01-0145-FEDER-007491), the Swedish Research Foundation, the Swedish Brain Foundation, Åke Wibergs stiftelse, and Karolinska Institutet Research Funds. T Quintela is a recipient of a FCT fellowship (SFRH/BPD/70781/2010). AC Duarte is a recipient of ICON. Joana Tomás was supported by a grant from CENTRO-07-ST24-FEDER-002015. This work and AC Duarte were supported by “Programa Operacional do Centro, Centro 2020” through the funding of the ICON project (Interdisciplinary Challenges On Neurodegeneration; CENTRO-01-0145-FEDER-000013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecília Reis A. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonçalves, I. et al. (2019). Experimental Tools to Study the Regulation and Function of the Choroid Plexus. In: Barichello, T. (eds) Blood-Brain Barrier. Neuromethods, vol 142. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8946-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8946-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8945-4

  • Online ISBN: 978-1-4939-8946-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics