Skip to main content

Zebrafish (Danio rerio) as a Viable Model to Study the Blood-Brain Barrier

  • Protocol
  • First Online:
Blood-Brain Barrier

Part of the book series: Neuromethods ((NM,volume 142))

Abstract

As the blood-brain barrier (BBB) is essential for maintaining brain homeostasis and protecting the brain from exogenous substances, impermeability of the BBB is a major obstacle for drug delivery into the brain. Under pathological conditions, the integrity of the BBB is susceptible to disruption and can be broken down in severe brain diseases. Therefore, the understanding of intrinsic complexity as well as modulation of the BBB is critical to discover potential therapeutics for the treatment of brain diseases. Zebrafish (Danio rerio) have emerged as a suitable animal model in studying pathology of diseases and screening leading compounds in the drug development and discovery because of their highly conserved nature in both genetics and cell biology as higher vertebrates. Importantly, due to their small body size, ease of care, rapid development, and transparency in the early embryo stage, zebrafish allow researchers to study the BBB and carry out high-throughput screening of potential therapeutics with cost-effectiveness. We thus aim to provide a technical overview of the procedures that can be used to analyze BBB integrity and functionality in zebrafish. Low permeability and strong tight junction-based BBB in zebrafish are very similar to those of higher vertebrates. Zebrafish could be an excellent experimental model organism for studying the development and maintenance of the BBB, defining disease pathway, and discovering specific and powerful therapies for the treatment of brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilhelm I, Fazakas C, Krizbai IA (2011) In vitro models of the blood-brain barrier. Acta Neurobiol Exp (Wars) 71:113–128

    Google Scholar 

  2. De Rosa G, Salzano G, Caraglia M, Abbruzzese A (2012) Nanotechnologies: a strategy to overcome blood-brain barrier. Curr Drug Metab 13:61–69

    Article  PubMed  Google Scholar 

  3. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14. https://doi.org/10.1602/neurorx.2.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12:54–61. https://doi.org/10.1016/j.drudis.2006.10.013

    Article  CAS  PubMed  Google Scholar 

  5. Nicolazzo JA, Charman SA, Charman WN (2006) Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol 58:281–293. https://doi.org/10.1211/jpp.58.3.0001

    Article  CAS  PubMed  Google Scholar 

  6. Reichel A, Begley DJ, Abbott NJ (2003) An overview of in vitro techniques for blood-brain barrier studies. Methods Mol Med 89:307–324. https://doi.org/10.1385/1-59259-419-0:307

    Article  CAS  PubMed  Google Scholar 

  7. Davis TP, Abbruscato TJ, Egleton RD (2015) Peptides at the blood brain barrier: knowing me knowing you. Peptides 72:50–56. https://doi.org/10.1016/j.peptides.2015.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keaney J, Campbell M (2015) The dynamic blood-brain barrier. FEBS J 282:4067–4079. https://doi.org/10.1111/febs.13412

    Article  CAS  PubMed  Google Scholar 

  9. Haseloff RF, Dithmer S, Winkler L, Wolburg H, Blasig IE (2015) Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects. Semin Cell Dev Biol 38:16–25. https://doi.org/10.1016/j.semcdb.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  10. Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:57–76

    Article  CAS  PubMed  Google Scholar 

  11. Mahar Doan KM et al (2002) Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 303:1029–1037. https://doi.org/10.1124/jpet.102.039255

    Article  CAS  PubMed  Google Scholar 

  12. Mahringer A, Ott M, Reimold I, Reichel V, Fricker G (2011) The ABC of the blood-brain barrier - regulation of drug efflux pumps. Curr Pharm Des 17:2762–2770

    Article  CAS  PubMed  Google Scholar 

  13. Rubinstein AL (2003) Zebrafish: from disease modeling to drug discovery. Curr Opin Drug Discov Devel 6:218–223

    CAS  PubMed  Google Scholar 

  14. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367. https://doi.org/10.1038/nrg2091

    Article  CAS  PubMed  Google Scholar 

  15. Umans RA, Taylor MR (2012) Zebrafish as a model to study drug transporters at the blood-brain barrier. Clin Pharmacol Ther 92:567–570. https://doi.org/10.1038/clpt.2012.168

    Article  CAS  PubMed  Google Scholar 

  16. Xie J, Farage E, Sugimoto M, Anand-Apte B (2010) A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC Dev Biol 10:76. https://doi.org/10.1186/1471-213X-10-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122:2337–2343. https://doi.org/10.1172/JCI60434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeong JY et al (2008) Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull 75:619–628. https://doi.org/10.1016/j.brainresbull.2007.10.043

    Article  CAS  PubMed  Google Scholar 

  19. Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G (2009) Zebrafish: a complete animal model for in vivo drug discovery and development. Curr Drug Metab 10:116–124

    Article  CAS  PubMed  Google Scholar 

  20. Karlsson J, von Hofsten J, Olsson PE (2001) Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol (NY) 3:522–527. https://doi.org/10.1007/s1012601-0053-4

    Article  CAS  Google Scholar 

  21. Avdesh A et al (2012) Regular care and maintenance of a zebrafish (Danio rerio) laboratory: an introduction. J Vis Exp e4196. https://doi.org/10.3791/4196

  22. Sive HL, Grainger RM, Harland RM (2010) Calibration of the injection volume for microinjection of Xenopus oocytes and embryos. Cold Spring Harb Protoc 2010:pdb prot5537. https://doi.org/10.1101/pdb.prot5537

    Article  PubMed  Google Scholar 

  23. Eliceiri BP, Gonzalez AM, Baird A (2011) Zebrafish model of the blood-brain barrier: morphological and permeability studies. Methods Mol Biol 686:371–378. https://doi.org/10.1007/978-1-60761-938-3_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang T et al (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32:2003–2014. https://doi.org/10.1007/s11095-014-1593-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang T et al (2017) Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J 19:475–486. https://doi.org/10.1208/s12248-016-0015-y

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yang, T., Bai, S. (2019). Zebrafish (Danio rerio) as a Viable Model to Study the Blood-Brain Barrier. In: Barichello, T. (eds) Blood-Brain Barrier. Neuromethods, vol 142. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8946-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8946-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8945-4

  • Online ISBN: 978-1-4939-8946-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics