Skip to main content

Virus-Induced Gene Silencing (VIGS) for Functional Characterization of Disease Resistance Genes in Barley Seedlings

  • Protocol
  • First Online:
Barley

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1900))

Abstract

With the recent advances in sequencing technologies, many studies are generating lists of candidate genes associated with specific traits. The major bottleneck in functional genomics is the validation of gene function. This is achieved by analyzing the effect of either gene silencing or overexpression on a specific phenotypic or biochemical trait. This usually requires the generation of stable transgenic plants and this can take considerable time. Therefore any technique that expedites the validation of gene function is of particular benefit in cereals, including barley. One such technique is Virus-Induced Gene Silencing (VIGS), which evokes a natural antiviral defense mechanism in plants. VIGS can be used to downregulate gene expression in a transient manner, but long enough to determine its effects on a specific phenotype. It is particularly useful for screening candidate genes and selecting those with potential for disease control. VIGS based on Barley Stripe Mosaic Virus (BSMV) is a powerful and efficient tool for the analysis of gene function in cereals. Here we present a BSMV VIGS protocol for simple and robust gene silencing in barley and describe it to evaluate the role of the hormone receptor BRI1 (Brassinosteroid Insensitive 1) in barley leaf resistance to Fusarium infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2(2):109–113

    Article  CAS  Google Scholar 

  2. Scofield SR, Brandt AS (2012) Virus-induced gene silencing in hexaploid wheat using barley stripe mosaic virus vectors. Methods Mol Biol 894:93–112

    Article  CAS  Google Scholar 

  3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  Google Scholar 

  4. Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363

    Article  CAS  Google Scholar 

  5. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4):279–289

    Article  CAS  Google Scholar 

  6. Van der Krol AR, Mur LA, Beld M, Mol J, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2(4):291–299

    Article  Google Scholar 

  7. Ding XS, Schneider WL, Chaluvadi SR, Mian MR, Nelson RS (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol Plant-Microbe Interact 19(11):1229–1239

    Article  CAS  Google Scholar 

  8. Kumagai M, Donson J, Della-Cioppa G, Harvey D, Hanley K, Grill L (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A 92(5):1679–1683

    Article  CAS  Google Scholar 

  9. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25(2):237–245

    Article  CAS  Google Scholar 

  10. Xu J, Schubert J, Altpeter F (2001) Dissection of RNA-mediated ryegrass mosaic virus resistance in fertile transgenic perennial ryegrass (Lolium perenne L.). Plant J 26(3):265–274

    Article  CAS  Google Scholar 

  11. Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, Taylor M, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134(4):1308–1316

    Article  CAS  Google Scholar 

  12. Pflieger S, Blanchet S, Camborde L, Drugeon G, Rousseau A, Noizet M, Planchais S, Jupin I (2008) Efficient virus-induced gene silencing in Arabidopsis using a ‘one-step’ TYMV-derived vector. Plant J 56(4):678–690

    Article  CAS  Google Scholar 

  13. Huang C, Xie Y, Zhou X (2009) Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. Plant Biotechnol J 7(3):254–265

    Article  CAS  Google Scholar 

  14. Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386(2):407–416

    Article  CAS  Google Scholar 

  15. Zhang C, Bradshaw JD, Whitham SA, Hill JH (2010) The development of an efficient multipurpose bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiol 153(1):52–65

    Article  CAS  Google Scholar 

  16. Donald R, Jackson AO (1994) The barley stripe mosaic virus gamma b gene encodes a multifunctional cysteine-rich protein that affects pathogenesis. Plant Cell 6(11):1593–1606

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30(3):315–327

    Article  CAS  Google Scholar 

  18. Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138(4):2165–2173

    Article  CAS  Google Scholar 

  19. Lee W-S, Rudd JJ, Kanyuka K (2015) Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance. Fungal Genet Biol 79:84–88

    Article  CAS  Google Scholar 

  20. Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138(4):2155–2164

    Article  CAS  Google Scholar 

  21. Hu P, Meng Y, Wise RP (2009) Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions. Mol Plant Microbe Interact 22(3):311–320

    Article  CAS  Google Scholar 

  22. Ali SS, Gunupuru LR, Kumar GS, Khan M, Scofield S, Nicholson P, Doohan FM (2014) Plant disease resistance is augmented in uzu barley lines modified in the brassinosteroid receptor BRI1. BMC Plant Biol 14(1):1

    Article  Google Scholar 

  23. Perochon A, Jianguang J, Kahla A, Arunachalam C, Scofield SR, Bowden S, Wallington E, Doohan FM (2015) TaFROG encodes a Pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus Fusarium graminearum. Plant Physiol 169(4):2895–2906

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Walter S, Kahla A, Arunachalam C, Perochon A, Khan MR, Scofield SR, Doohan FM (2015) A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance. J Exp Bot 66:2583–2593

    Article  CAS  Google Scholar 

  25. Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M (2007) Stability of barley stripe mosaic virus-induced gene silencing in barley. Mol Plant Microbe Interact 20(11):1323–1331

    Article  CAS  Google Scholar 

  26. Scofield SR, Nelson RS (2009) Resources for virus-induced gene silencing in the grasses. Plant Physiol 149(1):152–157

    Article  CAS  Google Scholar 

  27. Ansari KI, Walter S, Brennan JM, Lemmens M, Kessans S, McGahern A, Egan D, Doohan FM (2007) Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. Theor Appl Genet 114(5):927–937

    Article  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  29. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11(7):36–42

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation Ireland research fund (14/IA/2508) and Department of Agriculture Research Stimulus Grant RSF 11/S/103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona M. Doohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gunupuru, L.R., Perochon, A., Ali, S.S., Scofield, S.R., Doohan, F.M. (2019). Virus-Induced Gene Silencing (VIGS) for Functional Characterization of Disease Resistance Genes in Barley Seedlings. In: Harwood, W. (eds) Barley. Methods in Molecular Biology, vol 1900. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8944-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8944-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8942-3

  • Online ISBN: 978-1-4939-8944-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics