Skip to main content

High-Resolution RT-PCR Analysis of Alternative Barley Transcripts

  • Protocol
  • First Online:
Barley

Abstract

Assembly of the barley genome and extensive use of RNA-seq has resulted in an abundance of gene expression data and the recognition of wide-scale production of alternatively spliced transcripts. Here, we describe in detail a high-resolution reverse transcription-PCR based panel (HR RT-PCR) that confirms the accuracy of alternatively spliced transcripts from RNA-seq and allows quantification of changes in the proportion of splice isoforms between different experimental conditions, time points, tissues, genotypes, ecotypes, and treatments. By validating a selection of barley genes, use of the panel gives confidence or otherwise to the genome-wide global changes in alternatively spliced transcripts reported by RNA-seq. This simple assay can readily be applied to perform detailed transcript isoform analysis for any gene in any species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou HL, Luo G, Wise JA et al (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42:701–713

    Article  CAS  Google Scholar 

  2. Reddy ASN, Marquez Y, Kalyna M et al (2013) Complexity of the alternative splicing landscape in plants. Plant Cell 25:3657–3683

    Article  CAS  Google Scholar 

  3. Naftelberg S, Schor IE, Ast G et al (2015) Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem 84:165–198

    Article  CAS  Google Scholar 

  4. Filichkin S, Priest HD, Megraw M et al (2015) Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress. Curr Opin Plant Biol 24:125–135

    Article  CAS  Google Scholar 

  5. Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656

    Article  CAS  Google Scholar 

  6. Lee Y, Rio DC (2015) Mechanisms and regulation of alternative Pre-mRNA splicing. Annu Rev Biochem 84:291–323

    Article  CAS  Google Scholar 

  7. Mastrangelo AM, Marone D, Laidò G et al (2012) Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity. Plant Sci 185–186:40–49

    Article  Google Scholar 

  8. Capovilla G, Pajoro A, Immink RG et al (2015) Role of alternative pre-mRNA splicing in temperature signaling. Curr Opin Plant Biol 27:97–103

    Article  CAS  Google Scholar 

  9. International Barley Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Article  Google Scholar 

  10. Zhang Q, Zhang X, Pettolino F et al (2016) Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos. J Plant Physiol 191:127–139

    Article  CAS  Google Scholar 

  11. Zhang Q, Zhang X, Wang S et al (2016) Involvement of alternative splicing in barley seed germination. PLoS One 11:e0152824

    Article  Google Scholar 

  12. Simpson CG, Fuller J, Maronova M et al (2008) Monitoring changes in alternative precursor messenger RNA splicing in multiple gene transcripts. Plant J 53:1035–1048

    Article  CAS  Google Scholar 

  13. Marquez Y, Brown JWS, Simpson CG et al (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195

    Article  CAS  Google Scholar 

  14. James AB, Syed NH, Bordage S et al (2012) Alternative splicing mediates responses of the arabidopsis circadian clock to temperature changes. Plant Cell 24:961–981

    Article  CAS  Google Scholar 

  15. James A, Syed N, Brown J et al (2012) Thermoplasticity in the plant circadian clock: how plants tell the time-perature. Plant Signal Behav 7:1219–1223

    Article  CAS  Google Scholar 

  16. Raczynska KD, Simpson CG, Ciesiolka A et al (2010) Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 38:265–278

    Article  CAS  Google Scholar 

  17. Streitner C, Köster T, Simpson CG et al (2012) An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with target transcripts in Arabidopsis thaliana. Nucleic Acids Res 40:11240–11255

    Article  CAS  Google Scholar 

  18. Simpson CG, Lewandowska D, Liney M et al (2014) Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially. New Phytol 203:424–436

    Article  CAS  Google Scholar 

  19. Calixto CP, Simpson CG, Waugh R et al (2016) Alternative splicing of barley clock genes in response to low temperature. PLoS One 11:e0168028

    Article  Google Scholar 

  20. Rundle SJ, Zielinski RE (1991) Organization and expression of two tandemly oriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley. J Biol Chem 266:4677–4685

    CAS  PubMed  Google Scholar 

  21. Milne I, Stephen G, Bayer M et al (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202

    Article  CAS  Google Scholar 

  22. Steijger T, Abril JF, Engström PG et al (2013) Assessment of transcript reconstruction methods for RNA-seq. Nat Methods 10:1177–1184

    Article  CAS  Google Scholar 

  23. Alamancos GP, Pagès A, Trincado JL et al (2015) Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA 21:1521–1531

    Article  CAS  Google Scholar 

  24. Zhang R, Calixto CPG, Marquez Y et al (2016) AtRTD2: A Reference Transcript Dataset for accurate quantification of alternative splicing and expression changes in Arabidopsis thaliana RNA-seq data. bioRxiv. https://doi.org/10.1101/051938

  25. Brown JWS, Calixto CP, Zhang R (2017) High-quality reference transcript datasets hold the key to transcript-specific RNA-sequencing analysis in plants. New Phytol 213:525–530

    Article  CAS  Google Scholar 

  26. Kim SH, Koroleva OA, Lewandowska D et al (2009) Aberrant mRNA transcripts and the nonsense-mediated decay proteins UPF2 and UPF3 are enriched in the nucleolus. Plant Cell 21:2045–2057

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work is supported by grants from the Biotechnology and Biological Sciences Research Council (BB/I00663X/1: to RW), and the Scottish Government Rural and Environment Science and Analytical Services division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig G. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Simpson, C.G. et al. (2019). High-Resolution RT-PCR Analysis of Alternative Barley Transcripts. In: Harwood, W. (eds) Barley. Methods in Molecular Biology, vol 1900. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8944-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8944-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8942-3

  • Online ISBN: 978-1-4939-8944-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics