Skip to main content

Immune Tolerance and Rejection in Organ Transplantation

  • Protocol
  • First Online:
Immunological Tolerance

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1899))

Abstract

In this chapter, we describe the history of transplantation, the multiple cell types, and mechanisms that are involved in rejection and tolerance of a transplanted organ, as well as summarize the common and promising new therapeutics used in transplant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson T, Medawar PB (1943) The fate of skin homografts in man. J Anat 77(299–310):294

    Google Scholar 

  2. Medawar PB (1944) The behaviour and fate of skin autografts and skin homografts in rabbits: a report to the War Wounds Committee of the Medical Research Council. J Anat 78:176–199

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Medawar PB (1945) A second study of the behaviour and fate of skin homografts in rabbits: a report to the War Wounds Committee of the Medical Research Council. J Anat 79(157–176):154

    Google Scholar 

  4. Billingham RE, Brent L, Medawar PB (1954) Quantitative studies on tissue transplantation immunity. II. The origin, strength and duration of actively and adoptively acquired immunity. Proc R Soc Lond B Biol Sci 143:58–80

    CAS  PubMed  Google Scholar 

  5. Owen RD (1945) Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102:400–401

    CAS  PubMed  Google Scholar 

  6. Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606

    CAS  PubMed  Google Scholar 

  7. Mitchison NA (1953) Passive transfer of transplantation immunity. Nature 171:267–268

    CAS  PubMed  Google Scholar 

  8. Hume DM, Merrill JP, Miller BF et al (1955) Experiences with renal homotransplantation in the human: report of nine cases. J Clin Invest 34:327–382

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Guild WR, Harrison JH, Merrill JP et al (1955) Successful homotransplantation of the kidney in an identical twin. Trans Am Clin Climatol Assoc 67:167–173

    PubMed  Google Scholar 

  10. Merrill JP, Murray JE, Harrison JH et al (1956) Successful homotransplantation of the human kidney between identical twins. J Am Med Assoc 160:277–282

    CAS  PubMed  Google Scholar 

  11. Merrill JP, Murray JE, Takacs FJ et al (1963) Successful transplantation of kidney from a human cadaver. JAMA 185:347–353

    CAS  PubMed  Google Scholar 

  12. Murray JE, Merrill JP, Harrison JH et al (1963) Prolonged survival of human-kidney homografts by immunosuppressive drug therapy. N Engl J Med 268:1315–1323

    CAS  PubMed  Google Scholar 

  13. Thiel G, Harder F, Lortscher R et al (1983) Cyclosporin A used alone or in combination with low-dose steroids in cadaveric renal transplantation. Klin Wochenschr 61:991–1000

    CAS  PubMed  Google Scholar 

  14. Egerton M, Scollay R, Shortman K (1990) Kinetics of mature T-cell development in the thymus. Proc Natl Acad Sci U S A 87:2579–2582

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Surh CD, Sprent J (1994) T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372:100–103

    CAS  PubMed  Google Scholar 

  16. Anderson MS, Venanzi ES, Klein L et al (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    CAS  PubMed  Google Scholar 

  17. Liston A, Lesage S, Wilson J et al (2003) Aire regulates negative selection of organ-specific T cells. Nat Immunol 4:350–354

    CAS  PubMed  Google Scholar 

  18. Aschenbrenner K, D'Cruz LM, Vollmann EH et al (2007) Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8:351–358

    CAS  PubMed  Google Scholar 

  19. Mathis D, Benoist C (2009) Aire. Annu Rev Immunol 27:287–312

    CAS  PubMed  Google Scholar 

  20. Consortium F.-G (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17:399–403

    Google Scholar 

  21. Nagamine K, Peterson P, Scott HS et al (1997) Positional cloning of the APECED gene. Nat Genet 17:393–398

    CAS  PubMed  Google Scholar 

  22. Ahonen P, Myllarniemi S, Sipila I et al (1990) Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 322:1829–1836

    CAS  PubMed  Google Scholar 

  23. Goverman J, Woods A, Larson L et al (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72:551–560

    CAS  PubMed  Google Scholar 

  24. Liu GY, Fairchild PJ, Smith RM et al (1995) Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3:407–415

    CAS  PubMed  Google Scholar 

  25. Bouneaud C, Kourilsky P, Bousso P (2000) Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13:829–840

    CAS  PubMed  Google Scholar 

  26. Bianchi T, Pincus LB, Wurbel MA et al (2009) Maintenance of peripheral tolerance through controlled tissue homing of antigen-specific T cells in K14-mOVA mice. J Immunol 182:4665–4674

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lombardi G, Sidhu S, Batchelor R et al (1994) Anergic T cells as suppressor cells in vitro. Science 264:1587–1589

    CAS  PubMed  Google Scholar 

  28. Hao Z, Hampel B, Yagita H et al (2004) T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. J Exp Med 199:1355–1365

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hildeman D, Jorgensen T, Kappler J et al (2007) Apoptosis and the homeostatic control of immune responses. Curr Opin Immunol 19:516–521

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wells AD, Li XC, Li Y et al (1999) Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 5:1303–1307

    CAS  PubMed  Google Scholar 

  31. Li XC (2010) The significance of non-T-cell pathways in graft rejection: implications for transplant tolerance. Transplantation 90:1043–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hutchinson JA, Riquelme P, Sawitzki B et al (2011) Cutting edge: immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J Immunol 187:2072–2078

    CAS  PubMed  Google Scholar 

  33. Tiemessen MM, Jagger AL, Evans HG et al (2007) CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A 104:19446–19451

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu L, McCaslin D, Starzl TE et al (1995) Bone marrow-derived dendritic cell progenitors (NLDC 145+, MHC class II+, B7-1dim, B7-2−) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes. Transplantation 60:1539–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu F, Li Y, Qian S et al (1996) Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86−) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation 62:659–665

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lutz MB, Suri RM, Niimi M et al (2000) Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 30:1813–1822

    CAS  PubMed  Google Scholar 

  37. Roelen DL, Schuurhuis DH, van den Boogaardt DE et al (2003) Prolongation of skin graft survival by modulation of the alloimmune response with alternatively activated dendritic cells. Transplantation 76:1608–1615

    PubMed  Google Scholar 

  38. Sato K, Yamashita N, Yamashita N et al (2003) Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse. Immunity 18:367–379

    CAS  PubMed  Google Scholar 

  39. Swiecki M, Colonna M (2010) Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol Rev 234:142–162

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ochando JC, Homma C, Yang Y et al (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7:652–662

    CAS  PubMed  Google Scholar 

  41. Mazariegos GV, Zahorchak AF, Reyes J et al (2005) Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. Am J Transplant 5:314–322

    PubMed  Google Scholar 

  42. Tokita D, Mazariegos GV, Zahorchak AF et al (2008) High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. Transplantation 85:369–377

    PubMed  Google Scholar 

  43. Pak AS, Wright MA, Matthews JP et al (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1:95–103

    CAS  PubMed  Google Scholar 

  44. Bronte V, Wang M, Overwijk WW et al (1998) Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J Immunol 161:5313–5320

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dugast AS, Haudebourg T, Coulon F et al (2008) Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 180:7898–7906

    CAS  PubMed  Google Scholar 

  46. Marigo I, Bosio E, Solito S et al (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32:790–802

    CAS  PubMed  Google Scholar 

  47. Garcia MR, Ledgerwood L, Yang Y et al (2010) Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J Clin Invest 120:2486–2496

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hock BD, Mackenzie KA, Cross NB et al (2012) Renal transplant recipients have elevated frequencies of circulating myeloid-derived suppressor cells. Nephrol Dial Transplant 27:402–410

    CAS  PubMed  Google Scholar 

  49. De Wilde V, Van Rompaey N, Hill M et al (2009) Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am J Transplant 9:2034–2047

    PubMed  Google Scholar 

  50. Casiraghi F, Azzollini N, Cassis P et al (2008) Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 181:3933–3946

    CAS  PubMed  Google Scholar 

  51. English K, Ryan JM, Tobin L et al (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25 (High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156:149–160

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wood KJ, Bushell A, Hester J (2012) Regulatory immune cells in transplantation. Nat Rev Immunol 12:417–430

    CAS  PubMed  Google Scholar 

  53. Ding Y, Xu D, Feng G et al (2009) Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9. Diabetes 58:1797–1806

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ge W, Jiang J, Baroja ML et al (2009) Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am J Transplant 9:1760–1772

    CAS  PubMed  Google Scholar 

  55. Shlomchik MJ, Craft JE, Mamula MJ (2001) From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol 1:147–153

    CAS  PubMed  Google Scholar 

  56. Mauri C (2010) Regulation of immunity and autoimmunity by B cells. Curr Opin Immunol 22:761–767

    CAS  PubMed  Google Scholar 

  57. Mauri C, Bosma A (2012) Immune regulatory function of B cells. Annu Rev Immunol 30:221–241

    CAS  PubMed  Google Scholar 

  58. Fillatreau S, Sweenie CH, McGeachy MJ et al (2002) B cells regulate autoimmunity by provision of IL-10. Nat Immunol 3:944–950

    CAS  PubMed  Google Scholar 

  59. Mizoguchi A, Mizoguchi E, Takedatsu H et al (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16:219–230

    CAS  PubMed  Google Scholar 

  60. Mauri C, Gray D, Mushtaq N et al (2003) Prevention of arthritis by interleukin 10-producing B cells. J Exp Med 197:489–501

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tu W, Lau YL, Zheng J et al (2008) Efficient generation of human alloantigen-specific CD4+ regulatory T cells from naive precursors by CD40-activated B cells. Blood 112:2554–2562

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Flores-Borja F, Bosma A, Ng D et al (2013) CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med 5:173ra123

    Google Scholar 

  63. Newell KA, Asare A, Kirk AD et al (2010) Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest 120:1836–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Heidt S, Hester J, Shankar S et al (2012) B cell repopulation after alemtuzumab induction-transient increase in transitional B cells and long-term dominance of naive B cells. Am J Transplant 12:1784–1792

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Taylor PA, Lees CJ, Blazar BR (2002) The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99:3493–3499

    CAS  PubMed  Google Scholar 

  66. Wood KJ, Sakaguchi S (2003) Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3:199–210

    CAS  PubMed  Google Scholar 

  67. Sakaguchi S, Miyara M, Costantino CM et al (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    CAS  PubMed  Google Scholar 

  68. Vlad G, Cortesini R, Suciu-Foca N (2008) CD8+ T suppressor cells and the ILT3 master switch. Hum Immunol 69:681–686

    CAS  PubMed  Google Scholar 

  69. Li XL, Menoret S, Bezie S et al (2010) Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance. J Immunol 185:823–833

    CAS  PubMed  Google Scholar 

  70. Thomson CW, Lee BP, Zhang L (2006) Double-negative regulatory T cells: non-conventional regulators. Immunol Res 35:163–178

    CAS  PubMed  Google Scholar 

  71. Zeng D, Lewis D, Dejbakhsh-Jones S et al (1999) Bone marrow NK1.1(−) and NK1.1(+) T cells reciprocally regulate acute graft versus host disease. J Exp Med 189:1073–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Monteiro M, Almeida CF, Caridade M et al (2010) Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. J Immunol 185:2157–2163

    CAS  PubMed  Google Scholar 

  73. Hayday A, Tigelaar R (2003) Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol 3:233–242

    CAS  PubMed  Google Scholar 

  74. Josefowicz SZ, Rudensky A (2009) Control of regulatory T cell lineage commitment and maintenance. Immunity 30:616–625

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Francis RS, Feng G, Tha-In T et al (2011) Induction of transplantation tolerance converts potential effector T cells into graft-protective regulatory T cells. Eur J Immunol 41:726–738

    CAS  PubMed  Google Scholar 

  76. Wood KJ, Bushell A, Jones ND (2011) Immunologic unresponsiveness to alloantigen in vivo: a role for regulatory T cells. Immunol Rev 241:119–132

    CAS  PubMed  Google Scholar 

  77. Graca L, Thompson S, Lin CY et al (2002) Both CD4(+)CD25(+) and CD4(+)CD25(−) regulatory cells mediate dominant transplantation tolerance. J Immunol 168:5558–5565

    CAS  PubMed  Google Scholar 

  78. Feng G, Wood KJ, Bushell A (2008) Interferon-gamma conditioning ex vivo generates CD25+CD62L+Foxp3+ regulatory T cells that prevent allograft rejection: potential avenues for cellular therapy. Transplantation 86:578–589

    CAS  PubMed  Google Scholar 

  79. Hester J, Schiopu A, Nadig SN et al (2012) Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. Am J Transplant 12:2008–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Grohmann U, Orabona C, Fallarino F et al (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101

    CAS  PubMed  Google Scholar 

  81. Kingsley CI, Karim M, Bushell AR et al (2002) CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 168:1080–1086

    CAS  PubMed  Google Scholar 

  82. Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    CAS  PubMed  Google Scholar 

  83. Siegmund K, Feuerer M, Siewert C et al (2005) Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood 106:3097–3104

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gandolfo MT, Jang HR, Bagnasco SM et al (2009) Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int 76:717–729

    CAS  PubMed  Google Scholar 

  85. Graca L, Cobbold SP, Waldmann H (2002) Identification of regulatory T cells in tolerated allografts. J Exp Med 195:1641–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kendal AR, Chen Y, Regateiro FS et al (2011) Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J Exp Med 208:2043–2053

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hara M, Kingsley CI, Niimi M et al (2001) IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 166:3789–3796

    CAS  PubMed  Google Scholar 

  88. Bushell A, Wood K (2007) GITR ligation blocks allograft protection by induced CD25+CD4+ regulatory T cells without enhancing effector T-cell function. Am J Transplant 7:759–768

    CAS  PubMed  Google Scholar 

  89. Issa F, Hester J, Goto R et al (2010) Ex vivo-expanded human regulatory T cells prevent the rejection of skin allografts in a humanized mouse model. Transplantation 90:1321–1327

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nadig SN, Wieckiewicz J, Wu DC et al (2010) In vivo prevention of transplant arteriosclerosis by ex vivo-expanded human regulatory T cells. Nat Med 16:809–813

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Warnecke G, Bushell A, Nadig SN et al (2007) Regulation of transplant arteriosclerosis by CD25+CD4+ T cells generated to alloantigen in vivo. Transplantation 83:1459–1465

    CAS  PubMed  Google Scholar 

  92. Liu Z, Tugulea S, Cortesini R et al (1999) Inhibition of CD40 signaling pathway in antigen presenting cells by T suppressor cells. Hum Immunol 60:568–574

    CAS  PubMed  Google Scholar 

  93. Trzonkowski P, Zilvetti M, Chapman S et al (2008) Homeostatic repopulation by CD28−CD8+ T cells in alemtuzumab-depleted kidney transplant recipients treated with reduced immunosuppression. Am J Transplant 8:338–347

    CAS  PubMed  Google Scholar 

  94. Gilliet M, Liu YJ (2002) Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 195:695–704

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cai J, Lee J, Jankowska-Gan E et al (2004) Minor H antigen HA-1-specific regulator and effector CD8+ T cells, and HA-1 microchimerism, in allograft tolerance. J Exp Med 199:1017–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang ZX, Yang L, Young KJ et al (2000) Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat Med 6:782–789

    CAS  PubMed  Google Scholar 

  97. Ford MS, Young KJ, Zhang Z et al (2002) The immune regulatory function of lymphoproliferative double negative T cells in vitro and in vivo. J Exp Med 196:261–267

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hill M, Thebault P, Segovia M et al (2011) Cell therapy with autologous tolerogenic dendritic cells induces allograft tolerance through interferon-gamma and epstein-barr virus-induced gene 3. Am J Transplant 11:2036–2045

    CAS  PubMed  Google Scholar 

  99. McIver Z, Serio B, Dunbar A et al (2008) Double-negative regulatory T cells induce allotolerance when expanded after allogeneic haematopoietic stem cell transplantation. Br J Haematol 141:170–178

    CAS  PubMed  Google Scholar 

  100. Li Y, Koshiba T, Yoshizawa A et al (2004) Analyses of peripheral blood mononuclear cells in operational tolerance after pediatric living donor liver transplantation. Am J Transplant 4:2118–2125

    PubMed  Google Scholar 

  101. Martinez-Llordella M, Lozano JJ, Puig-Pey I et al (2008) Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients. J Clin Invest 118:2845–2857

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jukes JP, Wood KJ, Jones ND (2007) Natural killer T cells: a bridge to tolerance or a pathway to rejection? Transplantation 84:679–681

    PubMed  Google Scholar 

  103. Leveson-Gower DB, Olson JA, Sega EI et al (2011) Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood 117:3220–3229

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Salomon B, Lenschow DJ, Rhee L et al (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    CAS  PubMed  Google Scholar 

  105. Tang Q, Henriksen KJ, Boden EK et al (2003) Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171:3348–3352

    CAS  PubMed  Google Scholar 

  106. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    CAS  PubMed  Google Scholar 

  107. Salomon B, Bluestone JA (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19:225–252

    CAS  PubMed  Google Scholar 

  108. Dai Z, Konieczny BT, Baddoura FK et al (1998) Impaired alloantigen-mediated T cell apoptosis and failure to induce long-term allograft survival in IL-2-deficient mice. J Immunol 161:1659–1663

    CAS  PubMed  Google Scholar 

  109. Ozkaynak E, Gao W, Shemmeri N et al (2001) Importance of ICOS-B7RP-1 costimulation in acute and chronic allograft rejection. Nat Immunol 2:591–596

    CAS  PubMed  Google Scholar 

  110. Guo L, Li XK, Funeshima N et al (2002) Prolonged survival in rat liver transplantation with mouse monoclonal antibody against an inducible costimulator (ICOS). Transplantation 73:1027–1032

    CAS  PubMed  Google Scholar 

  111. Kosuge H, Suzuki J, Gotoh R et al (2003) Induction of immunologic tolerance to cardiac allograft by simultaneous blockade of inducible co-stimulator and cytotoxic T-lymphocyte antigen 4 pathway. Transplantation 75:1374–1379

    CAS  PubMed  Google Scholar 

  112. Nakamura Y, Yasunami Y, Satoh M et al (2003) Acceptance of islet allografts in the liver of mice by blockade of an inducible costimulator. Transplantation 75:1115–1118

    CAS  PubMed  Google Scholar 

  113. Nanji SA, Hancock WW, Anderson CC et al (2004) Multiple combination therapies involving blockade of ICOS/B7RP-1 costimulation facilitate long-term islet allograft survival. Am J Transplant 4:526–536

    CAS  PubMed  Google Scholar 

  114. Guillonneau C, Aubry V, Renaudin K et al (2005) Inhibition of chronic rejection and development of tolerogenic T cells after ICOS-ICOSL and CD40-CD40L co-stimulation blockade. Transplantation 80:546–554

    PubMed  Google Scholar 

  115. Harada H, Salama AD, Sho M et al (2003) The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. J Clin Invest 112:234–243

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Fallarino F, Grohmann U, Hwang KW et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212

    CAS  PubMed  Google Scholar 

  117. Bour-Jordan H, Esensten JH, Martinez-Llordella M et al (2011) Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol Rev 241:180–205

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Fife BT, Guleria I, Gubbels BM et al (2006) Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 203:2737–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ozkaynak E, Wang L, Goodearl A et al (2002) Programmed death-1 targeting can promote allograft survival. J Immunol 169:6546–6553

    CAS  PubMed  Google Scholar 

  120. Cai J, Terasaki PI (2010) Induction immunosuppression improves long-term graft and patient outcome in organ transplantation: an analysis of United Network for Organ Sharing registry data. Transplantation 90:1511–1515

    CAS  PubMed  Google Scholar 

  121. Singh N, Pirsch J, Samaniego M (2009) Antibody-mediated rejection: treatment alternatives and outcomes. Transplant Rev (Orlando) 23:34–46

    Google Scholar 

  122. Famulski KS, Broderick G, Einecke G et al (2007) Transcriptome analysis reveals heterogeneity in the injury response of kidney transplants. Am J Transplant 7:2483–2495

    CAS  PubMed  Google Scholar 

  123. Muhlberger I, Perco P, Fechete R et al (2009) Biomarkers in renal transplantation ischemia reperfusion injury. Transplantation 88:S14–S19

    PubMed  Google Scholar 

  124. Pallet N, Fougeray S, Beaune P et al (2009) Endoplasmic reticulum stress: an unrecognized actor in solid organ transplantation. Transplantation 88:605–613

    PubMed  Google Scholar 

  125. Kim IK, Bedi DS, Denecke C et al (2008) Impact of innate and adaptive immunity on rejection and tolerance. Transplantation 86:889–894

    CAS  PubMed  Google Scholar 

  126. Carvalho-Gaspar M, Billing JS, Spriewald BM et al (2005) Chemokine gene expression during allograft rejection: comparison of two quantitative PCR techniques. J Immunol Methods 301:41–52

    CAS  PubMed  Google Scholar 

  127. Larsen CP, Morris PJ, Austyn JM (1990) Donor dendritic leukocytes migrate from cardiac allografts into recipients’ spleens. Transplant Proc 22:1943–1944

    CAS  PubMed  Google Scholar 

  128. Hosgood SA, Nicholson ML (2010) The role of perfluorocarbon in organ preservation. Transplantation 89:1169–1175

    CAS  PubMed  Google Scholar 

  129. Moers C, Varnav OC, van Heurn E et al (2010) The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation 90:966–973

    PubMed  Google Scholar 

  130. Herrera OB, Golshayan D, Tibbott R et al (2004) A novel pathway of alloantigen presentation by dendritic cells. J Immunol 173:4828–4837

    CAS  PubMed  Google Scholar 

  131. Wood KJ, Goto R (2012) Mechanisms of rejection: current perspectives. Transplantation 93:1–10

    PubMed  Google Scholar 

  132. Anglicheau D, Suthanthiran M (2008) Noninvasive prediction of organ graft rejection and outcome using gene expression patterns. Transplantation 86:192–199

    PubMed  PubMed Central  Google Scholar 

  133. Terasaki PI, Cai J (2008) Human leukocyte antigen antibodies and chronic rejection: from association to causation. Transplantation 86:377–383

    PubMed  Google Scholar 

  134. Win TS, Pettigrew GJ (2010) Humoral autoimmunity and transplant vasculopathy: when allo is not enough. Transplantation 90:113–120

    PubMed  Google Scholar 

  135. Colvin RB, Smith RN (2005) Antibody-mediated organ-allograft rejection. Nat Rev Immunol 5:807–817

    CAS  PubMed  Google Scholar 

  136. Bloom DD, Chang Z, Fechner JH et al (2008) CD4+ CD25+ FOXP3+ regulatory T cells increase de novo in kidney transplant patients after immunodepletion with Campath-1H. Am J Transplant 8:793–802

    CAS  PubMed  Google Scholar 

  137. Battaglia M, Stabilini A, Migliavacca B et al (2006) Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177:8338–8347

    CAS  PubMed  Google Scholar 

  138. McMurchy AN, Bushell A, Levings MK et al (2011) Moving to tolerance: clinical application of T regulatory cells. Semin Immunol 23:304–313

    CAS  PubMed  Google Scholar 

  139. Sagoo P, Perucha E, Sawitzki B et al (2010) Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest 120:1848–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Tan J, Wu W, Xu X et al (2012) Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 307:1169–1177

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work from the authors’ own laboratory described in this review was supported by grants from The Wellcome Trust, Medical Research council, BBSRC, British Heart Foundation, and European Union through the ONE Study, Bio-DrIM and TRIAD projects. The authors would like to thank all members of TRIG past and present for their valuable contributions to the data reviewed herein. The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn J. Wood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stolp, J., Zaitsu, M., Wood, K.J. (2019). Immune Tolerance and Rejection in Organ Transplantation. In: Boyd, A. (eds) Immunological Tolerance. Methods in Molecular Biology, vol 1899. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8938-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8938-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8936-2

  • Online ISBN: 978-1-4939-8938-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics