Isolation and Characterisation of Human Adipose-Derived Stem Cells

  • Anna Wilson
  • Melisse Chee
  • Peter Butler
  • Ashleigh S. BoydEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1899)


Recently, adipose-derived stem cells (ASCs), obtained from fresh human lipoaspirate, have shown promise as immunomodulatory agents having demonstrated immunosuppressive functionality both in vitro and in vivo. A number of researchers have described the isolation of ASCs through the enzymatic digestion of fat samples, followed by a number of purification steps, involving centrifugation and filtration. Here, we utilize a standard isolation technique, with the added purification of putative ASCs by fluorescence activated cell sorting (FACS). ASCs are an extremely valuable resource in clinical applications, including reconstruction, regeneration, and investigations into immune activity. This method could be used to isolate and purify ASCs for such downstream applications.

Key words

Adipose-derived stem cells Adipose stem cells ASCs Isolation Characterization Immunosuppression Immunomodulation Stromal vascular fraction Collagenase Lipotransfer Lipoaspirate 



This work was supported by the Restoration of Appearance and Function Trust (RAFT), with funding from the Kirby Laing Foundation.


  1. 1.
    Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228CrossRefGoogle Scholar
  2. 2.
    Doi K et al (2013) Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. J Tissue Eng Regen Med 7(11):864–870CrossRefGoogle Scholar
  3. 3.
    Blaber SP et al (2012) Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med 10:172CrossRefGoogle Scholar
  4. 4.
    Ong WK, Sugii S (2013) Adipose-derived stem cells: fatty potentials for therapy. Int J Biochem Cell Biol 45(6):1083–1086CrossRefGoogle Scholar
  5. 5.
    Jeong SH, Ji YH, Yoon ES (2014) Immunosuppressive activity of adipose tissue-derived mesenchymal stem cells in a rat model of hind limb allotransplantation. Transplant Proc 46(5):1606–1614CrossRefGoogle Scholar
  6. 6.
    Nagaya R et al (2014) Mechanisms of the immunosuppressive effects of mouse adipose tissue-derived mesenchymal stromal cells on mouse alloreactively stimulated spleen cells. Exp Ther Med 7(1):17–22CrossRefGoogle Scholar
  7. 7.
    Barone AAL et al (2013) Immunomodulatory effects of adipose-derived stem cells: fact or fiction? Biomed Res Int 2013:383685Google Scholar
  8. 8.
    Puissant N et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129(1):118–129CrossRefGoogle Scholar
  9. 9.
    Yanez R et al (2006) Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24(11):2582–2591CrossRefGoogle Scholar
  10. 10.
    Cho KS et al (2009) IFATS collection: immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model. Stem Cells 27(1):259–265CrossRefGoogle Scholar
  11. 11.
    Bahrami B et al (2017) Adipose derived stem cells exert immunomodulatory effects on natural killer cells in breast cancer. Cell J 19(1):137–145PubMedGoogle Scholar
  12. 12.
    Yoo KH et al (2009) Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol 259(2):150–156CrossRefGoogle Scholar
  13. 13.
    Gronthos S et al (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63CrossRefGoogle Scholar
  14. 14.
    Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084CrossRefGoogle Scholar
  15. 15.
    Cui L et al (2007) Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 13(6):1185–1195CrossRefGoogle Scholar
  16. 16.
    Kingham PJ et al (2014) Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev 23(7):741–754CrossRefGoogle Scholar
  17. 17.
    Ohta Y et al (2017) Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy 19(7):839–848CrossRefGoogle Scholar
  18. 18.
    Gonzalez-Rey E et al (2009) Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58(7):929–939CrossRefGoogle Scholar
  19. 19.
    Lopez-Santalla M et al (2015) Human adipose-derived Mesenchymal stem cells modulate experimental autoimmune arthritis by modifying early adaptive T cell responses. Stem Cells 33(12):3493–3503CrossRefGoogle Scholar
  20. 20.
    Mariani E, Facchini A (2012) Clinical applications and biosafety of human adult mesenchymal stem cells. Curr Pharm Des 18(13):1821–1845CrossRefGoogle Scholar
  21. 21.
    Missana MC et al (2007) Autologous fat transfer in reconstructive breast surgery: indications, technique and results. Eur J Surg Oncol 33(6):685–690CrossRefGoogle Scholar
  22. 22.
    Bernard RW, Beran SJ (2003) Autologous fat graft in nipple reconstruction. Plast Reconstr Surg 112(4):964–968CrossRefGoogle Scholar
  23. 23.
    Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118(3 Suppl):108S–120SCrossRefGoogle Scholar
  24. 24.
    Yoshimura K et al (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthet Plast Surg 32(1):48–55 discussion 56-7CrossRefGoogle Scholar
  25. 25.
    Fraser J et al (2007) Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 9(5):459–467CrossRefGoogle Scholar
  26. 26.
    Deimling LI, et al. Interaction of human, canine and murine adipose-derived stem cells with different biomaterials. 5th European Conference of the International Federation for Medical and Biological Engineering, vol. 37, Pts 1 and 2, 2012. p. 1315.Google Scholar
  27. 27.
    Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317CrossRefGoogle Scholar
  28. 28.
    Rigotti G et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119(5):1409–1422CrossRefGoogle Scholar
  29. 29.
    Bunnell BA et al (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120CrossRefGoogle Scholar
  30. 30.
    Kolle SF et al (2013) Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 382(9898):1113–1120CrossRefGoogle Scholar
  31. 31.
    Punshon G et al (2008) Assessment of the potential of progenitor stem cells extracted from human peripheral blood for seeding a novel vascular graft material. Cell Prolif 41(2):321–335CrossRefGoogle Scholar
  32. 32.
    Suga H et al (2008) Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast Reconstr Surg 122(1):103–114CrossRefGoogle Scholar
  33. 33.
    Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69A(9):1037–1042CrossRefGoogle Scholar
  34. 34.
    Kanthilal M, Darling EM (2014) Characterization of mechanical and regenerative properties of human, adipose stromal cells. Cell Mol Bioeng 7(4):585–597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anna Wilson
    • 1
  • Melisse Chee
    • 1
  • Peter Butler
    • 1
  • Ashleigh S. Boyd
    • 2
    • 3
    Email author
  1. 1.Research Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College LondonRoyal Free HospitalLondonUK
  2. 2.Associate Professor in Stem Cell Biology and Regenerative Medicine, Research Department of Surgical Biotechnology Division of Surgery and Interventional Science University College London (UCL)Royal Free HospitalLondonUK
  3. 3.UCL Institute of Immunity and TransplantationRoyal Free HospitalLondonUK

Personalised recommendations