Skip to main content

Identification of Genomic Alterations Through Multilevel DNA Structural Analysis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1896))

Abstract

Current methods to identify genomic alterations using whole-genome sequencing (WGS) data are often limited to single nucleotide polymorphisms and insertions and deletions that are less than 10 bp in length. These limitations are largely due to challenges in accurately mapping short sequencing reads that significantly diverge from the reference genome. Newer sequencing-based methods have been developed to define and characterize larger DNA structural elements. This is achieved by enriching for and sequencing regions of the genome that contain a specific element, followed by identifying genomic regions with high densities of mapped short reads that designate the location of these elements. This process essentially aggregates short read data into larger structural units for further characterization. Here, we describe protocols for identifying various types of genomic alterations using differential analysis of these structural units. We focus on changes in DNA accessibility, protein–DNA interactions, and chromosomal contacts as measured by ATAC-Seq, ChIP-Seq, and Hi-C respectively. As many protocols have been published describing the generation and processing of these data, we focus on simple methods that can be used to identify mutations in these data, and can be executed by someone with limited computational expertise.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12(5):363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46(1):931–954

    Article  CAS  PubMed  Google Scholar 

  3. Bouwman BA, de Laat W (2015) Getting the genome in shape: the formation of loops, domains and compartments. Genome Biol 16(1):154

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen H, Chen J, Muir LA, Ronquist S, Meixner W, Ljungman M, Ried T, Smale S, Rajapakse I (2015) Functional organization of the human 4D Nucleome. Proc Natl Acad Sci U S A 112(26):8002–8007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang J, Marco E, Pinello L, Yuan GC (2015) Predicting chromatin organization using histone marks. Genome Biol 16(1):162

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol 20(3):290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaufmann S, Fuchs C, Gonik M, Khrameeva EE, Mironov AA, Frishman D (2015) Inter-chromosomal contact networks provide insights into mammalian chromatin organization. PLoS One 10(5):e0126125

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502

    Article  CAS  PubMed  Google Scholar 

  10. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raha D, Hong M, Snyder M (2010) ChIP-Seq: a method for global identification of regulatory elements in the genome. Curr Protoc Mol Biol 21:21–19

    Google Scholar 

  12. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21–29

    PubMed  PubMed Central  Google Scholar 

  14. Van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA, Dekker J, Lander ES (2010) Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp 39

    Google Scholar 

  15. Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, Aiden EL (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3(1):95–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Durand NC, Robinson JT, Shamim MS, Machol I, Mesirov JP, Lander ES, Aiden EL (2016) Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3(1):99–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lun AT, Smyth GK (2015) diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics 16(1):258

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  PubMed  PubMed Central  Google Scholar 

  21. Backman TW, Girke T (2016) systemPipeR: NGS workflow and report generation environment. BMC Bioinformatics 17(1):388

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Dresios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shultzaberger, R.K., Dresios, J. (2019). Identification of Genomic Alterations Through Multilevel DNA Structural Analysis. In: Demaria, M. (eds) Cellular Senescence. Methods in Molecular Biology, vol 1896. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8931-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8931-7_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8930-0

  • Online ISBN: 978-1-4939-8931-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics