Skip to main content

A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids

  • Protocol
  • First Online:
Cellular Senescence

Abstract

Lipofuscin accumulation is a hallmark of senescence. This nondegradable material aggregates in the cytoplasm of stressed or damaged cells due to metabolic imbalance associated with aging and age-related diseases. Indications of a soluble state of lipofuscin have also been provided, rendering the perspective of monitoring such processes via lipofuscin quantification in liquids intriguing. Therefore, the development of an accurate and reliable method is of paramount importance. Currently available assays are characterized by inherent pitfalls which demote their credibility. We herein describe a simple, highly specific and sensitive protocol for measuring lipofuscin levels in any type of liquid. The current method represents an evolution of a previously described assay, developed for in vitro and in vivo senescent cell recognition that exploits a newly synthesized Sudan Black-B analog (GL13). Analysis of human clinical samples with the modified protocol provided strong evidence of its usefulness for the exposure and surveillance of age-related conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 07 February 2019

    In Chapter 12, figure 1 was published with truncated texts within. This figure has now been replaced with a revised figure with the updated text.

References

  1. Georgakopoulou EA, Tsimaratou K, Evangelou K et al (2013) Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 5:37–50

    Article  CAS  Google Scholar 

  2. Evangelou K, Gorgoulis VG (2017) Sudan Black B, The specific histochemical stain for lipofuscin: a novel method to detect senescent cells. Methods Mol Biol 1534:111–119

    Article  CAS  Google Scholar 

  3. Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    Article  CAS  Google Scholar 

  4. Gorgoulis VG, Halazonetis TD (2010) Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22:816–827

    Article  CAS  Google Scholar 

  5. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  CAS  Google Scholar 

  6. Herbig U, Ferreira M, Condel L et al (2006) Cellular senescence in aging primates. Science 311:1257

    Article  CAS  Google Scholar 

  7. Lopez-Otin C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  Google Scholar 

  8. Evangelou K, Lougiakis N, Rizou SV et al (2017) Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16:192–197

    Article  CAS  Google Scholar 

  9. Galanos P, Vougas K, Walter D et al (2016) Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol 18:777–789

    Article  CAS  Google Scholar 

  10. Komseli ES, Pateras IS, Krejsgaard T et al (2018) A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence. BMC Genomics 19:37

    Article  Google Scholar 

  11. Barbouti A, Evangelou K, Pateras IS et al (2018) In situ evidence of cellular senescence in Thymic Epithelial Cells (TECs) during human thymic involution. Mech Ageing Dev. pii:S0047-6374(17)30300-7

    Google Scholar 

  12. Ivy G, Kanai S, Ohta M et al (1988) Lipofuscin-like substances accumulate rapidly in brain, retina and internal organs with cysteine protease inhibition. Adv Exp Med Biol 266:31–45

    Google Scholar 

  13. Ivy G, Roopsingh R, Kanai S et al (1996) Leupeptin causes an accumulation of lipofuscin-like substances and other signs of aging in kidneys of young rats: further evidence for the protease inhibitor model of aging. Ann N Y Acad Sci 786:12–23

    Article  CAS  Google Scholar 

  14. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619

    Article  CAS  Google Scholar 

  15. Terman A, Gustafsson B, Brunk UT (2006) The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem Biol Interact 163:29–37

    Article  CAS  Google Scholar 

  16. Terman A, Kurz T, Navratil M et al (2010) Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxid Redox Signal 12(4):503–535

    Article  CAS  Google Scholar 

  17. Höhn A, Grune T (2013) Lipofuscin: formation, effects and role of macroautophagy. Redox Biol 19(1):140–144

    Article  Google Scholar 

  18. Jung T, Höhn A, Grune T (2014) The proteasome and the degradation of oxidized proteins: partII protein oxidation and proteasomal degradation. Redox Biol 2:99–104

    Article  CAS  Google Scholar 

  19. König J, Ott C, Hugo M et al (2017) Mitochondrial contribution to lipofuscin formation. Redox Biol 11:673–681

    Article  Google Scholar 

  20. Korolchuk VI, Miwa S, Carroll B et al (2017) Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine 21:7–13

    Article  Google Scholar 

  21. Gaspar J, Mathieu J, Alvarez PJJ (2016) A rapid platform to generate lipofuscin and screen therapeutic drugs for efficacy in lipofuscin removal. Mater Meth Technol 10:1–9 ISSN 1314-7269

    Google Scholar 

  22. Sheehy MR (2002) A flow-cytometric method for quantification of neurolipofuscin and comparison with existing histological and biochemical approaches. Arch Gerontol Geriatr 34:233–248

    Article  CAS  Google Scholar 

  23. Di Guardo G (2015) Lipofuscin, lipofuscin-like pigments and autofluorescence. Eur J Histochem 59:2485

    Article  Google Scholar 

  24. Seehafer SS, Pearce DA (2006) You say lipofuscin, we say ceroid: defining autofluorescent storage material. Neurobiol Aging 27:576–588

    Article  CAS  Google Scholar 

  25. Bluhm BA, Brey T (2001) Age determination in the Antarctic shrimp Notocrangon antarcticus (Crustacea: Decapoda), using the autofluorescent pigment lipofuscin. Mar Biol 138:247–257

    Article  Google Scholar 

  26. Bluhm BA, Brey T, Klages M (2001) The autofluorescent age pigment lipofuscin: key to age, growth and productivity of the Antarctic amphipod Waldeckia obesa (Chevreux, 1905). J Exp Mar Bio Ecol 258:215–235

    Article  CAS  Google Scholar 

  27. Cassidy KM (2008) Use of extractable lipofuscin as an age biomarker to determine age structure of ghost shrimp (Neotrypaea californiensis) populations in west coast estuaries. Dissertation. Oregon State University

    Google Scholar 

  28. Harvey HR, Secor DH, Ju SJ (2008) The use of extractable lipofuscin for age determination of crustaceans: reply to Sheehy. Mar Ecol Prog Ser 353:307–311

    Article  Google Scholar 

  29. Puckett JB, Secor DΗ, Ju SJ (2008) Validation and application of lipofuscin-based age determination for Chesapeake Bay Blue Crabs Callinectes sapidus. Trans Am Fish Soc 137:1637–1649

    Article  Google Scholar 

  30. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41:1981–1989

    CAS  PubMed  Google Scholar 

  31. Meredith GE, Totterdell S, Petroske E et al (2002) Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 956:156–165

    Article  CAS  Google Scholar 

  32. Moreira PI, Siedlak SL, Wang X et al (2007) Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy 3:614–615

    Article  CAS  Google Scholar 

  33. Nozynski J, Zakliczynski M, Konecka-Mrowka D et al (2013) Advanced glycation end products and lipofuscin deposits share the same location in cardiocytes of the failing heart. Exp Gerontol 48:223–228

    Article  CAS  Google Scholar 

  34. Beregi E, Regius O (1983) Lipofuscin in lymphocytes and plasma cells in aging. Arch Gerontol Geriatr 2:229–235

    Article  CAS  Google Scholar 

  35. Skoumalová A, Mádlová P, Topinková E (2012) End products of lipid peroxidation in erythrocyte membranes in Alzheimer's disease. Cell Biochem Funct 30:205–210

    Article  Google Scholar 

  36. Feng FK, E LL, Kong XP et al (2015) Lipofuscin in saliva and plasma and its association with age in healthy adults. Aging Clin Exp Res 27:573–580

    Article  Google Scholar 

  37. Wu CX, Wei XB (2006) Influence of effective parts of Zingiber officinale on senium of rats resulting from high fat die. J Shandong Med Coll 3:010

    Google Scholar 

  38. Hegedus ZL, Frank HA, Steinman TI et al (1988) Elevated levels of plasma lipofuscins in patients with chronic renal failure. Arch Int Physiol Biochim 96:211–221

    CAS  PubMed  Google Scholar 

  39. Tsuchida M, Miura T, Mizutani K et al (1985) Fluorescent substances in mouse and human sera as a parameter of in vivo lipid peroxidation. Biochim Biophys Acta 834:196–204

    Article  CAS  Google Scholar 

  40. Roumen RM, Hendriks T, de Man BM et al (1994) Serum lipofuscin as a prognostic indicator of adult respiratory distress syndrome and multiple organ failure. Br J Surg 81:1300–1305

    Article  CAS  Google Scholar 

  41. Sutherland WH, Williams MJ, de Jong SA (2007) Plasma protein lipofuscin-like fluorophores in men with coronary artery disease treated with statins. Arch Med Res 38:757–763

    Article  CAS  Google Scholar 

  42. Skoumalová A, Ivica J, Šantorová P et al (2011) The lipid peroxidation products as possible markers of Alzheimer's disease in blood. Exp Gerontol 46:38–42

    Article  Google Scholar 

  43. Kuznetsov A, Frorip A, Maiste A et al (2015) Visible auto-fluorescence in biological fluids as biomarker of pathological processes and new monitoring tool. J Innov Opt Health Sci 8(3):1541003–1541009

    Article  Google Scholar 

  44. Tomečková V (2016) Monitoring of heart ischemia in blood serum. Spectral Anal Rev 4:11–22

    Article  Google Scholar 

  45. Chmátalová Z, Vyhnálek M, Laczó J et al (2016) Analysis of lipophilic fluorescent products in blood of Alzheimer's disease patients. J Cell Mol Med 20:1367–1372

    Article  Google Scholar 

  46. Madhuri S, Vengadesan N, Aruna P et al (2003) Native fluorescence spectroscopy of blood plasma in the characterization of oral malignance. Photochem Photobiol 78:197–204

    Article  CAS  Google Scholar 

  47. Sheehy MR, Roberts BE (1991) An alternative explanation for anomalies in "soluble lipofuscin" fluorescence data from insects, crustaceans, and other aquatic species. Exp Gerontol 26:495–509

    Article  CAS  Google Scholar 

  48. Yin D (1996) Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic Biol Med 21:871–888

    Article  CAS  Google Scholar 

  49. Mochizuki Y, Park MK, Mori T et al (1995) The difference in autofluorescence features of lipofuscin between brain and adrenal. Zool Sci 12:283–288

    Article  CAS  Google Scholar 

  50. Croce AC, Bottiroli G (2014) Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem 58:2461

    Article  CAS  Google Scholar 

  51. Rózanowska M, Pawlak A, Rózanowski B et al (2004) Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Invest Ophthalmol Vis Sci 45:1052–1060

    Article  Google Scholar 

  52. Otsuki J, Nagai Y, Matsuyama Y et al (2012) The influence of the redox state of follicular fluid albumin on the viability of aspirated human oocytes. Syst Biol Reprod Med 58:149–153

    Article  CAS  Google Scholar 

  53. Otsuki J, Nagai Y, Chiba K (2007) Lipofuscin bodies in human oocytes as an indicator of oocyte quality. J Assist Reprod Genet 24:263–270

    Article  Google Scholar 

  54. Siakotos AN, Watanabe I, Pennington K et al (1973) Procedures for the mass isolation of pure lipofuscins from normal human heart and liver. Biochem Med 7:25–38

    Article  CAS  Google Scholar 

  55. Chang J, Wang Y, Shao L et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83

    Article  CAS  Google Scholar 

  56. Sheehy MRJ (2008) Questioning the use of biochemical extraction to measure lipofuscin for age determination of crabs: comment on Ju et al. (1999, 2001). Mar Ecol Prog Ser 353:303–306

    Article  Google Scholar 

  57. Crowley CE, Gandy RL, Daly KL et al (2014) Problems associated with a lipofuscin extraction method used to age blue crabs Callinectes sapidus cultured in Florida, USA. Aquat Biol 21:85–92

    Article  Google Scholar 

  58. Manjunath S, Bola Sadashiva SR, Satyamoorthy K, et al (2014) Nature of autofluorescence in human serum albumin under its native, unfolding and digested forms. Proc SPIE 8935, advanced biomedical and clinical diagnostic systems. XII, 8935:893520

    Google Scholar 

  59. Wolfbeis SO, Leiner M (1985) Mapping of the total fluorescence of human blood serum as a new method for its characterization. Anal Chim Acta 167:203–215

    Article  CAS  Google Scholar 

  60. Hegedus ZL, Altschule MD, Frank HA et al (1985) Increase in plasma lipofuscin levels of stored blood. Crit Care Med 13:155–159

    Article  CAS  Google Scholar 

  61. Cequier-Sánchez E, Rodríguez C, Ravelo AG et al (2008) Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J Agric Food Chem 56:4297–4303

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Alexandros Papalampros and Dr. Dimitrios Papadopoulos for providing material for this investigation. This work was financially supported by the “SYNTRAIN” ITN Horizon 2020 Grant No 722729, the NKUA SARG grants 70/3/12128, 70/3/8916, 70/3/1135 and the Welfare Foundation for Social & Cultural Sciences (KIKPE) Greece.

Conflict of interest:

The authors wish to declare no conflict of interest.

Patent pending: UK Patent Application No GB1803531.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis G. Gorgoulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rizou, S.V. et al. (2019). A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. In: Demaria, M. (eds) Cellular Senescence. Methods in Molecular Biology, vol 1896. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8931-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8931-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8930-0

  • Online ISBN: 978-1-4939-8931-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics