Skip to main content

Methods in the Extraction and Chemical Analysis of Medicinal Plants

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

This chapter aims to give an overview of advanced techniques for the extraction, isolation, and analysis of natural products from medicinal plants. It is of great pharmacological interest to isolate and study bioactive natural products. Although sometimes the plants selected for study are chosen based on their traditional medicinal uses, this need not be the case as other attributes may justify study, such as chemical diversity and lack of previous study. Extraction techniques represent one of the earliest steps in natural products isolation, and as such can greatly impact results. Once a crude extract is obtained, compound isolation is achieved through the framework of bioassay-guided fractionation. Under this framework, chromatographic separations are used to iteratively generate fractions, each enriched with a compound or set of compounds of a certain attribute, until finally single compounds are isolated. Analysis of extracts, fractions, and single compounds is performed via spectroscopy, through which the chemical character of fractions and structural attributes of compounds of interest can be elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Seidel V (2012) Initial and bulk extraction of natural products isolation. Methods Mol Biol 864:27–41

    Article  CAS  PubMed  Google Scholar 

  2. WHO (2003) WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants. http://apps.who.int/medicinedocs/en/d/Js4928e/

    Google Scholar 

  3. UN (2011) United Nations convention on biological diversity: nagoya protocol. Secretariat of the Convention on Biological Diversity, Montreal, ON

    Google Scholar 

  4. Bijttebier S, Van der Auwera A, Foubert K, Voorspoels S, Pieters L, Apers S (2016) Bridging the gap between comprehensive extraction protocols in plant metabolomics studies and method validation. Anal Chim Acta 935:136–150

    Article  CAS  PubMed  Google Scholar 

  5. Sarker SD, Nahar L (2012) An introduction to natural products isolation. Methods Mol Biol 864:1–25

    Article  CAS  PubMed  Google Scholar 

  6. Sturm S, Seger C (2012) Liquid chromatography-nuclear magnetic resonance coupling as alternative to liquid chromatography-mass spectrometry hyphenations: curious option or powerful and complementary routine tool? J Chromatogr A 1259:50–61

    Article  CAS  PubMed  Google Scholar 

  7. Sarker SD, Nahar L (2012) Hyphenated techniques and their applications in natural products analysis. Methods Mol Biol 864:301–340

    Article  CAS  PubMed  Google Scholar 

  8. Handra SS, Khanuja SPS, Longo G, Rakesh DD (2008) Extraction technologies for medicinal and aromatic plants. United Nations Industrial Development Organization and the International Centre for Science and High Technology, Trieste

    Google Scholar 

  9. Jones WP, Kinghorn AD (2012) Extraction of plant secondary metabolites. Methods Mol Biol 864:341–366

    Article  CAS  PubMed  Google Scholar 

  10. Nafiu MO, Hamid AA, Muritala HF, Adeyemi SB (2017) Preparation, standardization, and quality control of medicinal plants in Africa. In: Medicinal spices and vegetables from Africa. Academic, Cambridge, MA, pp 171–204

    Book  Google Scholar 

  11. Sarker SD, Latif Z, Gray AI (2006) Natural products isolation. Humana Press, Totowa, NJ

    Book  Google Scholar 

  12. Luque de Castro MD, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389

    Article  CAS  PubMed  Google Scholar 

  13. McCloud TG (2010) High throughput extraction of plant, marine and fungal specimens for preservation of biologically active molecules. Molecules 15:4526–4563

    Article  CAS  PubMed  Google Scholar 

  14. Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560

    Article  CAS  PubMed  Google Scholar 

  15. Tongnuanchan P, Benjakul S (2014) Essential oils: extraction, bioactivities, and their uses for food preservation. J Food Sci 79:R1231–R1249

    Article  CAS  PubMed  Google Scholar 

  16. El Asbahani A, Miladi K, Badri W, Sala M, Ait Addi EH et al (2015) Essential oils: from extraction to encapsulation. Int J Pharm 483:220–243

    Article  CAS  PubMed  Google Scholar 

  17. Herrero M, Mendiola JA, Cifuentes A, Ibanez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511

    Article  CAS  PubMed  Google Scholar 

  18. Capuzzo A, Maffei ME, Occhipinti A (2013) Supercritical fluid extraction of plant flavors and fragrances. Molecules 18:7194–7238

    Article  CAS  PubMed  Google Scholar 

  19. Fornari T, Vicente G, Vazquez E, Garcia-Risco MR, Reglero G (2012) Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J Chromatogr A 1250:34–48

    Article  CAS  PubMed  Google Scholar 

  20. Pourmortazavi SM, Hajimirsadeghi SS (2007) Supercritical fluid extraction in plant essential and volatile oil analysis. J Chromatogr A 1163:2–24

    Article  CAS  PubMed  Google Scholar 

  21. Stenholm A, Goransson U, Bohlin L (2013) Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L. Phytochem Anal 24:176–183

    Article  CAS  PubMed  Google Scholar 

  22. Mottaleb MA, Sarker SD (2012) Accelerated solvent extraction for natural products isolation. Methods Mol Biol 864:75–87

    Article  CAS  PubMed  Google Scholar 

  23. Sun H, Ge X, Lv Y, Wang A (2012) Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. J Chromatogr A 1237:1–23

    Article  CAS  PubMed  Google Scholar 

  24. Chan CH, Yusoff R, Ngoh GC, Kung FW (2011) Microwave-assisted extractions of active ingredients from plants. J Chromatogr A 1218:6213–6225

    Article  CAS  PubMed  Google Scholar 

  25. Zhou T, Xiao X, Li G (2012) Microwave accelerated selective Soxhlet extraction for the determination of organophosphorus and carbamate pesticides in ginseng with gas chromatography/mass spectrometry. Anal Chem 84:5816–5822

    Article  CAS  PubMed  Google Scholar 

  26. Garcia-Ayuso LE, Sanchez M, Fernandez de Alba A, Luque de Castro MD (1998) Focused microwave-assisted soxhlet: an advantageous tool for sample extraction. Anal Chem 70:2426–2431

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Yang L, Zu Y, Zhao X (2014) Microwave-assisted simultaneous extraction of luteolin and apigenin from tree peony pod and evaluation of its antioxidant activity. Sci World J 2014:506971

    Google Scholar 

  28. Mussatto SI (2015) Microwave-assisted extraction of fucoidan from marine algae. Methods Mol Biol 1308:151–157

    Article  PubMed  CAS  Google Scholar 

  29. Rodriguez-Solana R, Salgado JM, Dominguez JM, Cortes-Dieguez S (2015) Comparison of Soxhlet, accelerated solvent and supercritical fluid extraction techniques for volatile (GC-MS and GC/FID) and phenolic compounds (HPLC-ESI/MS/MS) from Lamiaceae species. Phytochem Anal 26:61–71

    Article  CAS  PubMed  Google Scholar 

  30. Shen J, Shao X (2005) A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco. Anal Bioanal Chem 383:1003–1008

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Meng B, Lu X, Liu Y, Tao S (2007) Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Anal Chim Acta 602:211–222

    Article  CAS  PubMed  Google Scholar 

  32. Punin Crespo MO, Lage Yusty MA (2005) Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples. Chemosphere 59:1407–1413

    Article  CAS  PubMed  Google Scholar 

  33. Jurado-Sanchez B, Ballesteros E, Gallego M (2013) Comparison of microwave assisted, ultrasonic assisted and Soxhlet extractions of N-nitrosamines and aromatic amines in sewage sludge, soils and sediments. Sci Total Environ 463-464:293–301

    Article  CAS  PubMed  Google Scholar 

  34. Stevens WC Jr, Hill DC (2009) General methods for flash chromatography using disposable columns. Mol Divers 13:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lloyd L, Ball S, Mapp K (2010) Is there really a difference between flash and HPLC for LC purification? http://www.chromatographyonline.com/there-really-difference-between-flash-and-hplc-lc-purification?id=&pageID=1&sk=&date=

    Google Scholar 

  36. Quave CL, Lyles JT, Kavanaugh JS, Nelson K, Parlet CP et al (2015) Castanea sativa (European Chestnut) leaf extracts rich in ursene and oleanene derivatives block Staphylococcus aureus virulence and pathogenesis without detectable resistance. PLoS One 10:e0136486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Muhs A, Lyles JT, Parlet CP, Nelson K, Kavanaugh JS et al (2017) Virulence inhibitors from Brazilian Peppertree block quorum sensing and abate dermonecrosis in skin infection models. Sci Rep 7:42275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moosmann B, Kneisel S, Wohlfarth A, Brecht V, Auwarter V (2013) A fast and inexpensive procedure for the isolation of synthetic cannabinoids from ‘Spice’ products using a flash chromatography system. Anal Bioanal Chem 405:3929–3935

    Article  CAS  PubMed  Google Scholar 

  39. Liang ZK, Huang RG, Xie ZS, Xu XJ (2015) Preparative isolation of paclitaxel and related taxanes from cell cultures of Taxus chinensis using reversed-phase flash chromatography. Nat Prod Rep 29:327–330

    Article  CAS  Google Scholar 

  40. Hu JF, Garo E, Yoo HD, Cremin PA, Goering MG et al (2005) Cyclolignans from Scyphocephalium ochocoa via high-throughput natural product chemistry methods. Phytochemistry 66:1077–1082

    Article  CAS  PubMed  Google Scholar 

  41. Jacobson BM (1988) An inexpensive way to do flash chromatography. J Chem Educ 65:459

    Article  CAS  Google Scholar 

  42. USP (2018) United States pharmacopeia. United States Pharmacopeial Convention, Rockville, MD

    Google Scholar 

  43. EPC (2016) European pharmacopoeia. European Pharmacopoeia Commission, Strasbourg

    Google Scholar 

  44. CPC (2015) Chinese pharmacopoeia. Chinese Pharmacopoeia Commission, Beijing

    Google Scholar 

  45. Ozek T, Demirci F (2012) Isolation of natural products by preparative gas chromatography. Methods Mol Biol 864:275–300

    Article  CAS  PubMed  Google Scholar 

  46. Zuo HL, Yang FQ, Huang WH, Xia ZN (2013) Preparative gas chromatography and its applications. J Chromatogr Sci 51:704–715

    Article  CAS  PubMed  Google Scholar 

  47. Rahman MM, Abd El-Aty AM, Choi J-H, Shin H-C, Shin SC, Shim J-H (2015) Basic overview on gas chromatography columns. In: Analytical separation science. Wiley-VCH Verlag GmbH & Co., Berlin

    Book  Google Scholar 

  48. Jumaah F, Plaza M, Abrahamsson V, Turner C, Sandahl M (2016) A fast and sensitive method for the separation of carotenoids using ultra-high performance supercritical fluid chromatography-mass spectrometry. Anal Bioanal Chem 408:5883–5894

    Article  CAS  PubMed  Google Scholar 

  49. Wada Y, Matsubara A, Uchikata T, Iwasaki Y, Morimoto S et al (2011) Metabolic profiling of beta-cryptoxanthin and its fatty acid esters by supercritical fluid chromatography coupled with triple quadrupole mass spectrometry. J Sep Sci 34:3546–3552

    Article  CAS  PubMed  Google Scholar 

  50. Qiao X, An R, Huang Y, Ji S, Li L et al (2014) Separation of 25R/S-ergostane triterpenoids in the medicinal mushroom Antrodia camphorata using analytical supercritical-fluid chromatography. J Chromatogr A 1358:252–260

    Article  CAS  PubMed  Google Scholar 

  51. Hartmann A, Ganzera M (2015) Supercritical fluid chromatography—theoretical background and applications on natural products. Planta Med 81:1570–1581

    Article  CAS  PubMed  Google Scholar 

  52. Eldridge GR, Vervoort HC, Lee CM, Cremin PA, Williams CT et al (2002) High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal Chem 74:3963–3971

    Article  CAS  PubMed  Google Scholar 

  53. Hajji S, Beliveau J, Simon DZ, Salvador R, Aube C, Conti A (1984) A rapid method for the prefractionation of essential oils. Application to the essential oil of Black Spruce [Picea Mariana (Mill.) BSP.]. J Liq Chromatogr 7:2671–2677

    Article  CAS  Google Scholar 

  54. Bugni TS, Harper MK, McCulloch MWB, Reppart J, Ireland CM (2008) Fractionated marine invertebrate extract libraries for drug discovery. Molecules 13:1372–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bindseil KU, Jakupovic J, Wolf D, Lavayre J, Leboul J, van der Pyl D (2001) Pure compound libraries; a new perspective for natural product based drug discovery. Drug Discov Today 6:840–847

    Article  CAS  PubMed  Google Scholar 

  56. Appleton DR, Buss AD, Butler MS (2007) A simple method for high-throughput extract prefractionation for biological screening. Chimia 61:327–331

    Article  CAS  Google Scholar 

  57. Wagenaar MM (2008) Pre-fractionated microbial samples—the second generation natural products library at Wyeth. Molecules 13:1406–1426

    Article  CAS  PubMed  Google Scholar 

  58. Tu Y, Jeffries C, Ruan H, Nelson C, Smithson D et al (2010) Automated high-throughput system to fractionate plant natural products for drug discovery. J Nat Prod (Gorakhpur) 73:751–754

    Article  CAS  Google Scholar 

  59. Kato N, Takahashi S, Nogawa T, Saito T, Osada H (2012) Construction of a microbial natural product library for chemical biology studies. Curr Op Chem Biol 16:101–108

    Article  CAS  Google Scholar 

  60. Camp D, Davis RA, Campitelli M, Ebdon J, Quinn RJ (2012) Drug-like properties: guiding principles for the design of natural product libraries. J Nat Prod (Gorakhpur) 75:72–81

    Article  CAS  Google Scholar 

  61. Ymele-Leki P, Cao S, Sharp J, Lambert KG, McAdam AJ et al (2012) A high-throughput screen identifies a new natural product with broad-spectrum antibacterial activity. PLoS One 7:e31307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hashimoto J, Watanabe T, Seki T, Karasawa S, Izumikawa M et al (2009) Novel in vitro protein fragment complementation assay applicable to high-throughput screening in a 1536-well format. J Biomol Screen 14:970–979

    Article  CAS  PubMed  Google Scholar 

  63. Wong WR, Oliver AG, Linington RG (2012) Development of antibiotic activity profile screening for the classification and discovery of natural product antibiotics. Chem Biol 19:1483–1495

    Article  CAS  PubMed  Google Scholar 

  64. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111–129

    Article  CAS  PubMed  Google Scholar 

  65. Latif Z, Sarker SD (2012) Isolation of natural products by preparative high performance liquid chromatography (prep-HPLC). Methods Mol Biol 864:255–274

    Article  CAS  PubMed  Google Scholar 

  66. Houssen WE, Jaspars M (2012) Isolation of marine natural products. Methods Mol Biol 864:367–392

    Article  CAS  PubMed  Google Scholar 

  67. Nahar L, Sarker SD (2012) Supercritical fluid extraction in natural products analyses. Methods Mol Biol 864:43–74

    Article  CAS  PubMed  Google Scholar 

  68. Ifa DR, Wu C, Ouyang Z, Cooks RG (2010) Desorption electrospray ionization and other ambient ionization methods: current progress and preview. Analyst 135:669–681

    Article  CAS  PubMed  Google Scholar 

  69. Badu-Tawiah AK, Eberlin LS, Ouyang Z, Cooks RG (2013) Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu Rev Phys Chem 64:481–505

    Article  CAS  PubMed  Google Scholar 

  70. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  PubMed  Google Scholar 

  71. Bouslimani A, Sanchez LM, Garg N, Dorrestein PC (2014) Mass spectrometry of natural products: current, emerging and future technologies. Nat Prod Rep 31:718–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Esquenazi E, Yang YL, Watrous J, Gerwick WH, Dorrestein PC (2009) Imaging mass spectrometry of natural products. Nat Prod Rep 26:1521–1534

    Article  CAS  PubMed  Google Scholar 

  73. Jarmusch AK, Cooks RG (2014) Emerging capabilities of mass spectrometry for natural products. Nat Prod Rep 31:730–738

    Article  CAS  PubMed  Google Scholar 

  74. Purves K, Macintyre L, Brennan D, Hreggviethsson GO, Kuttner E et al (2016) Using molecular networking for microbial secondary metabolite bioprospecting. Metabolites 6:E2

    Article  PubMed  CAS  Google Scholar 

  75. Winnikoff JR, Glukhov E, Watrous J, Dorrestein PC, Gerwick WH (2014) Quantitative molecular networking to profile marine cyanobacterial metabolomes. J Antibiot 67:105–112

    Article  CAS  PubMed  Google Scholar 

  76. Duncan KR, Crusemann M, Lechner A, Sarkar A, Li J et al (2015) Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol 22:460–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Breton RC, Reynolds WF (2013) Using NMR to identify and characterize natural products. Nat Prod Rep 30:501–524

    Article  CAS  PubMed  Google Scholar 

  78. Harrington d BP, Wang X (2017) Spectral representation of proton NMR spectroscopy for the pattern recognition of complex materials. J Anal Test 1:10

    Article  Google Scholar 

  79. Markus MA, Ferrier J, Luchsinger SM, Yuk J, Cuerrier A et al (2014) Distinguishing Vaccinium species by chemical fingerprinting based on NMR spectra, validated with spectra collected in different laboratories. Planta Med 80:732–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lang G, Mayhudin NA, Mitova MI, Sun L, van der Sar S et al (2008) Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod (Gorakhpur) 71:1595–1599

    Article  CAS  Google Scholar 

  81. ACS (2018) SciFinder. scifinder.cas.org

  82. DNP (2017) Dictionary of natural products. http://dnp.chemnetbase.com

    Google Scholar 

  83. UIC (2015) NAPRALERT. www.napralert.org

  84. UCSD (2018) GNPS. https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp

  85. RSC (2018) Royal Society of Chemistry: MarinLit http://pubs.rsc.org/marinlit/

  86. Ibrahim A, Yang L, Johnston C, Liu X, Ma B, Magarvey NA (2012) Dereplicating nonribosomal peptides using an informatic search algorithm for natural products (iSNAP) discovery. Proc Natl Acad Sci U S A 109:19196–19201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mohimani H, Yang YL, Liu WT, Hsieh PW, Dorrestein PC, Pevzner PA (2011) Sequencing cyclic peptides by multistage mass spectrometry. Proteomics 11:3642–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mohimani H, Liu WT, Mylne JS, Poth AG, Colgrave ML et al (2011) Cycloquest: identification of cyclopeptides via database search of their mass spectra against genome databases. J Proteome Res 10:4505–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ng J, Bandeira N, Liu WT, Ghassemian M, Simmons TL et al (2009) Dereplication and de novo sequencing of nonribosomal peptides. Nat Methods 6:596–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Exarchou V, Krucker M, van Beek TA, Vervoort J, Gerothanassis IP, Albert K (2005) LC-NMR coupling technology: recent advancements and applications in natural products analysis. Magn Reson Chem 43:681–687

    Article  CAS  PubMed  Google Scholar 

  91. Exarchou V, Godejohann M, van Beek TA, Gerothanassis IP, Vervoort J (2003) LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano. Anal Chem 75:6288–6294

    Article  CAS  PubMed  Google Scholar 

  92. Kenny O, Smyth TJ, Hewage CM, Brunton NP, McLoughlin P (2014) 4-hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC-SPE-NMR and LC-MS techniques. Phytochemistry 98:197–203

    Article  CAS  PubMed  Google Scholar 

  93. Gu WY, Li N, Leung EL, Zhou H, Yao XJ et al (2015) Rapid identification of new minor chemical constituents from Smilacis Glabrae Rhizoma by combined use of UHPLC-Q-TOF-MS, preparative HPLC and UHPLC-SPE-NMR-MS techniques. Phytochem Anal 26:428–435

    Article  CAS  PubMed  Google Scholar 

  94. Wasinger Valerie C, Cordwell Stuart J, Cerpa-Poljak A, Yan JX, Gooley AA et al (1995) Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16:1090–1094

    Article  Google Scholar 

  95. Griffiths WJ, Karu K, Hornshaw M, Woffendin G, Wang Y (2007) Metabolomics and metabolite profiling: past heroes and future developments. Eur J Mass Spectrom (Chichester) 13:45–50

    Article  CAS  Google Scholar 

  96. Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 30:2

    PubMed  Google Scholar 

  97. Chong J, Soufan O, Li C, Caraus I, Li S et al (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res:310, 486–494

    Google Scholar 

  98. SRI (2018) The Scripps Research Institute: XCMS. https://xcmsonline.scripps.edu

  99. Roessner U, Dias DA (eds) (2013) Metabolomics tools for natural product discovery, vol 1055. Humana Press, Totowa, NJ

    Google Scholar 

  100. Kim Hye K, Verpoorte R (2009) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13

    Article  CAS  Google Scholar 

  101. Garcia-Flores M, Juarez-Colunga S, Garcia-Casarrubias A, Trachsel S, Winkler R, Tiessen A (2015) Metabolic profiling of plant extracts using direct-injection electrospray ionization mass spectrometry allows for high-throughput phenotypic characterization according to genetic and environmental effects. J Agric Food Chem 63:1042–1052

    Article  CAS  PubMed  Google Scholar 

  102. Creydt M, Fischer M (2017) Plant metabolomics: maximizing metabolome coverage by optimizing mobile phase additives for nontargeted mass spectrometry in positive and negative electrospray ionization mode. Anal Chem 89:10474–10486

    Article  CAS  PubMed  Google Scholar 

  103. Gorrochategui E, Jaumot J, Lacorte S, Tauler R (2016) Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. Trends Analyt Chem 82:425–442

    Article  CAS  Google Scholar 

  104. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743

    Article  CAS  PubMed  Google Scholar 

  106. Commisso M, Strazzer P, Toffali K, Stocchero M, Guzzo F (2013) Untargeted metabolomics: an emerging approach to determine the composition of herbal products. Comput Struct Biotechnol J 4:e201301007

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassandra L. Quave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Salam, A.M., Lyles, J.T., Quave, C.L. (2019). Methods in the Extraction and Chemical Analysis of Medicinal Plants. In: Albuquerque, U., de Lucena, R., Cruz da Cunha, L., Alves, R. (eds) Methods and Techniques in Ethnobiology and Ethnoecology . Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8919-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8919-5_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8918-8

  • Online ISBN: 978-1-4939-8919-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics