Skip to main content

Measurement of Nanoparticle-Induced Mitochondrial Membrane Potential Alterations

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1894))

Abstract

Mitochondria hold a critical role in cell metabolism and homeostasis. Mitochondrial injury plays central part in deciding cell fate especially in programmed cell death pathways. Various nanomaterials lead to different cell death modalities by inducing mitochondrial injury. Mitochondrial injury is manifested as multiple biochemical events ranging from altered energy production, mitochondrial outer membrane permeability, release of pro-apoptotic BCl-2 family proteins, loss of mitochondrial inner membrane potential, mitochondrial swelling, and disruption of mitochondrial structure leading to eventual lysis of mitochondria. Mitochondrial membrane permeability (loss of mitochondrial membrane potential) is a critical event in deciding cell fate. This chapter presents an overview of nanomaterial-induced loss of mitochondrial membrane potential and discusses potential nano-specific artifacts in these assays. Finally, a detailed methodology to accurately quantify and validate the loss of mitochondrial membrane potential after nanomaterial exposures is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fine A, Janssen-Heininger Y, Soultanakis RP, Swisher SG, Uhal BD (2000) Apoptosis in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 279(3):L423–L427. https://doi.org/10.1152/ajplung.2000.279.3.L423

    Article  CAS  PubMed  Google Scholar 

  2. Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012) Role of apoptosis in disease. Aging (Albany NY) 4(5):330–349. https://doi.org/10.18632/aging.100459

    Article  CAS  Google Scholar 

  3. Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11(13):1050–1062. https://doi.org/10.1016/j.micinf.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  4. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14(7):1237–1243. https://doi.org/10.1038/sj.cdd.4402148

    Article  CAS  PubMed  Google Scholar 

  5. Preedia Babu E, Subastri A, Suyavaran A, Nithyananthan S, Suresh Kumar M, Premkumar K, Bharathidasan R, Thirunavukkarasu C (2017) Anticancer potential of ZnO nanoparticle-ferulic acid conjugate on Huh-7 and HepG2 cells and diethyl nitrosamine induced hepatocellular cancer on Wistar albino rat. Nanomedicine 14(2):415–428. https://doi.org/10.1016/j.nano.2017.11.003

    Article  CAS  Google Scholar 

  6. Wang Y, Wei G, Zhang X, Huang X, Zhao J, Guo X, Zhou S (2018) Multistage targeting strategy using magnetic composite nanoparticles for synergism of photothermal therapy and chemotherapy. Small 14(12):e1702994. https://doi.org/10.1002/smll.201702994

    Article  CAS  PubMed  Google Scholar 

  7. Alavi AS, Meshkini A (2018) Fabrication of poly(ethylene glycol)-coated mesoporous nanocomposite ZnO@Fe2O3 for methotrexate delivery: an integrated nanoplatform for dual-mode cancer therapy. Eur J Pharm Sci 115:144–157. https://doi.org/10.1016/j.ejps.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  8. Madala HR, Punganuru SR, Ali-Osman F, Zhang R, Srivenugopal KS (2018) Brain- and brain tumor-penetrating disulfiram nanoparticles: sequence of cytotoxic events and efficacy in human glioma cell lines and intracranial xenografts. Oncotarget 9(3):3459–3482. https://doi.org/10.18632/oncotarget.23320

    Article  PubMed  Google Scholar 

  9. Lu J, Liu X, Liao YP, Salazar F, Sun B, Jiang W, Chang CH, Jiang J, Wang X, Wu AM, Meng H, Nel AE (2017) Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun 8(1):1811. https://doi.org/10.1038/s41467-017-01651-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hussain S, Al-Nsour F, Rice AB, Marshburn J, Yingling B, Ji Z, Zink JI, Walker NJ, Garantziotis S (2012) Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6(7):5820–5829. https://doi.org/10.1021/nn302235u

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hussain S, Sangtian S, Anderson SM, Snyder RJ, Marshburn JD, Rice AB, Bonner JC, Garantziotis S (2014) Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts. Part Fibre Toxicol 11:28. https://doi.org/10.1186/1743-8977-11-28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hussain S, Thomassen LC, Ferecatu I, Borot MC, Andreau K, Martens JA, Fleury J, Baeza-Squiban A, Marano F, Boland S (2010) Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol 7:10. https://doi.org/10.1186/1743-8977-7-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Li L, Cui J, Liu Z, Zhou X, Li Z, Yu Y, Jia Y, Zuo D, Wu Y (2018) Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol Lett 285:156–167. https://doi.org/10.1016/j.toxlet.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Yang M, Jing L, Ren L, Wei J, Zhang J, Zhang F, Duan J, Zhou X, Sun Z (2018) Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female Balb/c mice. Environ Sci Pollut Res Int 25(4):3423–3434. https://doi.org/10.1007/s11356-017-0724-5

    Article  CAS  PubMed  Google Scholar 

  15. Paesano L, Perotti A, Buschini A, Carubbi C, Marmiroli M, Maestri E, Iannotta S, Marmiroli N (2016) Markers for toxicity to HepG2 exposed to cadmium sulphide quantum dots; damage to mitochondria. Toxicology 374:18–28. https://doi.org/10.1016/j.tox.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  16. Yang Y, Yu Y, Wang J, Li Y, Li Y, Wei J, Zheng T, Jin M, Sun Z (2017) Silica nanoparticles induced intrinsic apoptosis in neuroblastoma SH-SY5Y cells via CytC/Apaf-1 pathway. Environ Toxicol Pharmacol 52:161–169. https://doi.org/10.1016/j.etap.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  17. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jaattela M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Munoz-Pinedo C, Nagata S, Nunez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed Central  PubMed  Google Scholar 

  18. Bonora M, Wieckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, Pinton P (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34(12):1475–1486. https://doi.org/10.1038/onc.2014.96

    Article  CAS  PubMed  Google Scholar 

  19. Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P (2018) Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 70:56–63. https://doi.org/10.1016/j.ceca.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  20. Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, Finkbeiner WE, Widdicombe JH, Gruenert DC (1994) CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol 10(1):38–47. https://doi.org/10.1165/ajrcmb.10.1.7507342

    Article  CAS  PubMed  Google Scholar 

  21. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1–3):142–149. https://doi.org/10.1016/j.tox.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  22. Val S, Hussain S, Boland S, Hamel R, Baeza-Squiban A, Marano F (2009) Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: need for multiparametric evaluation due to adsorption artifacts. Inhal Toxicol 21(Suppl 1):115–122. https://doi.org/10.1080/08958370902942533

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salik Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hussain, S. (2019). Measurement of Nanoparticle-Induced Mitochondrial Membrane Potential Alterations. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics