Skip to main content

DNA Methylation Analysis

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1894))

Abstract

DNA methylation is a process by which methyl groups are added to cytosine or adenine. DNA methylation can change the activity of the DNA molecule without changing the sequence. Methylation of 5-methylcytosine (5mC) is widespread in both eukaryotes and prokaryotes, and it is a very important epigenetic modification event, which can regulate gene activity and influence a number of key processes such as genomic imprinting, cell differentiation, transcriptional regulation, and chromatin remodeling. Profiling DNA methylation across the genome is critical to understanding the influence of methylation in normal biology and diseases including cancer. Recent discoveries of 5-methylcytosine (5mC) oxidation derivatives including 5-hydroxymethylcytosine (5hmC), 5-formylcytsine (5fC), and 5-carboxycytosine (5caC) in mammalian genome further expand our understanding of the methylation regulation. Genome-wide analyses such as microarrays and next-generation sequencing technologies have been used to assess large fractions of the methylome. A number of different quantitative approaches have also been established to map the DNA epigenomes with single-base resolution, as represented by the bisulfite-based methods, such as classical bisulfite sequencing, pyrosequencing etc. These methods have been used to generate base-resolution maps of 5mC and its oxidation derivatives in genomic samples. The focus of this chapter is to provide the methodologies that have been developed to detect the cytosine derivatives in the genomic DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153

    Article  CAS  Google Scholar 

  2. Biswas S, Rao CM (2017) Epigenetics in cancer: fundamentals and beyond. Pharmacol Ther 173:118–134

    Article  CAS  Google Scholar 

  3. Duruisseaux M, Esteller M (2018) Lung cancer epigenetics: from knowledge to applications. Semin Cancer Biol 51:116

    Article  CAS  Google Scholar 

  4. Natanzon Y, Goode EL, Cunningham JM (2018) Epigenetics in ovarian cancer. Semin Cancer Biol 51:160

    Article  CAS  Google Scholar 

  5. Wilkinson AW, Gozani O (2017) Cancer epigenetics: reading the future of leukaemia. Nature 543(7644):186–188

    Article  CAS  Google Scholar 

  6. Skvortsova K et al (2017) Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenetics Chromatin 10:16

    Article  Google Scholar 

  7. Liu S et al (2017) Diagnostic role of Wnt pathway gene promoter methylation in non small cell lung cancer. Oncotarget 8(22):36354–36367

    PubMed  PubMed Central  Google Scholar 

  8. Tang J et al (2015) Global DNA methylation profiling technologies and the ovarian cancer methylome. Methods Mol Biol 1238:653–675

    Article  Google Scholar 

  9. Meissner A et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33(18):5868–5877

    Article  CAS  Google Scholar 

  10. Martin-Herranz DE et al (2017) cuRRBS: simple and robust evaluation of enzyme combinations for reduced representation approaches. Nucleic Acids Res 45(20):11559–11569

    Article  CAS  Google Scholar 

  11. Chatterjee A et al (2017) Generating multiple base-resolution DNA methylomes using reduced representation bisulfite sequencing. Methods Mol Biol 1537:279–298

    Article  CAS  Google Scholar 

  12. Rauch TA et al (2008) High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A 105(1):252–257

    Article  CAS  Google Scholar 

  13. Aberg KA et al (2017) A MBD-seq protocol for large-scale methylome-wide studies with (very) low amounts of DNA. Epigenetics 12:743–750

    Article  Google Scholar 

  14. Jadhav RR et al (2016) Methyl-binding DNA capture sequencing for patient tissues. J Vis Exp (116)

    Google Scholar 

  15. Weber M et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862

    Article  CAS  Google Scholar 

  16. Beck D, Sadler-Riggleman I, Skinner MK (2017) Generational comparisons (F1 versus F3) of vinclozolin induced epigenetic transgenerational inheritance of sperm differential DNA methylation regions (epimutations) using MeDIP-Seq. Environ Epigenet 3(3):dvx016

    Article  Google Scholar 

  17. Grimm C, Adjaye J (2012) Analysis of the methylome of human embryonic stem cells employing methylated DNA immunoprecipitation coupled to next-generation sequencing. Methods Mol Biol 873:281–295

    Article  CAS  Google Scholar 

  18. Fouse SD, Nagarajan RO, Costello JF (2010) Genome-scale DNA methylation analysis. Epigenomics 2(1):105–117

    Article  CAS  Google Scholar 

  19. Wischnitzki E et al (2016) Selecting hypomethylated genomic regions using MRE-Seq. Methods Mol Biol 1482:83–102

    Article  CAS  Google Scholar 

  20. Naumov VA et al (2013) Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips. Epigenetics 8(9):921–934

    Article  CAS  Google Scholar 

  21. de Ruijter T et al (2015) Formalin-fixed, paraffin-embedded (FFPE) tissue epigenomics using Infinium HumanMethylation450 BeadChip assays. Lab Invest 95(7):833–842

    Article  Google Scholar 

  22. Touleimat N, Tost J (2012) Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 4(3):325–341

    Article  CAS  Google Scholar 

  23. Cokus SJ et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    Article  CAS  Google Scholar 

  24. Chen Y, Yu S, Zhong S (2018) Profiling DNA methylation using bisulfite sequencing (BS-Seq). Methods Mol Biol 1675:31–43

    Article  CAS  Google Scholar 

  25. Kristensen L, Johansen J, Grønbæk K (2015) Allele-specific DNA methylation detection by pyrosequencing®. Methods Mol Biol 1315:271–289

    Article  Google Scholar 

  26. Gao L et al (2017) Epigenetic regulation of AXL and risk of childhood asthma symptoms. Clin Epigenetics 9:121

    Article  Google Scholar 

  27. Ku J, Jeon Y, Park J (2011) Methylation-specific PCR. Methods Mol Biol 791:23–32

    Article  CAS  Google Scholar 

  28. Hu Y et al (2017) Candidate tumor suppressor ZNF154 suppresses invasion and metastasis in NPC by inhibiting the EMT via Wnt/β-catenin signalling. Oncotarget 8(49):85749–85758

    Article  Google Scholar 

  29. Goldenberg D et al (2004) Intraoperative molecular margin analysis in head and neck cancer. Arch Otolaryngol Head Neck Surg 130(1):39–44

    Article  Google Scholar 

  30. Cao Y et al (2018) Aberrant hypermethylation of the HOXD10 gene in papillary thyroid cancer with BRAFV600E mutation. Oncol Rep 39(1):338–348

    CAS  PubMed  Google Scholar 

  31. Yang Y, Scott S (2017) DNA Methylation profiling using long-read single molecule real-time bisulfite sequencing (SMRT-BS). Methods Mol Biol 1654:125–134

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the National Natural Science Foundation of China (No. 81472960, 81001242, 81502794), Zhejiang Province Natural Science Foundation of China (Y13H260011), Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents (2014), and Zhejiang Medical Health Science and Technology Foundation (2015RCA007).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Feng, L., Lou, J. (2019). DNA Methylation Analysis. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics