Skip to main content

Characterizing Starch Molecular Structure of Rice

  • Protocol
  • First Online:
Book cover Rice Grain Quality

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1892))

Abstract

A better understanding of the nutritional properties of rice starch is important because of the rapid rise of diet-related health complications, particularly obesity, type 2 diabetes, and colorectal cancers. Rice starch that is slowly digested to glucose, and where significant quantities of starch which reach the lower gut (“resistant starch”), can mitigate, and also delay the onset of, these diseases. These digestibility properties depend to some extent on starch molecular structure. The characterization of this structure is therefore significant for understanding and developing healthier slower digestible rice. In this chapter, a series of techniques used for characterizing starch structure are reviewed and the procedure for preparing rice starch samples with minimum degradation for characterizing starch chain length distribution (CLD) and overall molecular structure is given. Some methods for choosing or developing plants showing desirable structural characteristics are briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46(Suppl 2):S33–S50

    PubMed  Google Scholar 

  2. Byrnes SE, Miller JCB, Denyer GS (1995) Amylopectin starch promotes the development of insulin-resistance in rats. J Nutr 125:1430–1437

    CAS  PubMed  Google Scholar 

  3. Johnston KL, Thomas EL, Bell JD, Frost GS, Robertson MD (2010) Resistant starch improves insulin sensitivity in metabolic syndrome. Diabet Med 27:391–397

    Article  CAS  Google Scholar 

  4. Lehmann U, Robin F (2007) Slowly digestible starch, its structure and health implications: a review. Trends Food Sci Technol 18:346–355

    Article  CAS  Google Scholar 

  5. Baba T, Arai Y (1984) Structural features of amylomaize starch. 3. Structural characterization of amylopectin and intermediate material in amylomaize starch granules. Agric Biol Chem 48:1763–1775

    CAS  Google Scholar 

  6. Li L, Jiang HX, Campbell M, Blanco M, Jane JL (2008) Characterization of maize amylose-extender (ae) mutant starches. Part i: relationship between resistant starch contents and molecular structures. Carbohydr Polym 74:396–404

    Article  CAS  Google Scholar 

  7. Vilaplana F, Gilbert RG (2010) Two-dimensional size/branch length distributions of a branched polymer. Macromolecules 43:7321–7329

    Article  CAS  Google Scholar 

  8. Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995) Production of waxy (amylose-free) wheats. Mol Gen Genet 248:253–259

    Article  CAS  Google Scholar 

  9. Jiang HX, Jane LL, Acevedo D, Green A, Shinn G, Schrenker D, Srichuwong S, Campbell M, Wu YS (2010) Variations in starch physicochemical properties from a generation-means analysis study using amylomaize v and vii parents. J Agric Food Chem 58:5633–5639

    Article  CAS  Google Scholar 

  10. Vilaplana F, Hasjim J, Gilbert RG (2012) Amylose content in starches: toward optimal definition and validating experimental methods. Carbohydr Polym 88:103–111

    Article  CAS  Google Scholar 

  11. Gilbert RG (2011) Size-separation characterization of starch and glycogen for biosynthesis-structure-property relationships. Anal Bioanal Chem 399:1425–1438

    Article  CAS  Google Scholar 

  12. Gilbert RG, Witt T, Hasjim J (2013) What is being learned about starch properties from multiple-level characterization. Cereal Chem 90:312–325

    Article  CAS  Google Scholar 

  13. Witt T, Gilbert RG (2014) Causal relations between structural features of amylopectin, a semicrystalline hyperbranched polymer. Biomacromolecules 15:2501–2511

    Article  CAS  Google Scholar 

  14. Witt T, Doutch J, Gilbert EP, Gilbert RG (2012) Relations between molecular, crystalline, and lamellar structures of amylopectin. Biomacromolecules 13:4273–4282

    Article  CAS  Google Scholar 

  15. Zhang G, Ao Z, Hamaker BR (2008) Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure. J Agric Food Chem 56:4686–4694

    Article  CAS  Google Scholar 

  16. Zhang G, Sofyan M, Hamaker BR (2008) Slowly digestible state of starch: mechanism of slow digestion property of gelatinized maize starch. J Agric Food Chem 56:4695–4702

    Article  CAS  Google Scholar 

  17. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M (2005) Starches from different botanical sources i: contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr Polym 60:529–538

    Article  CAS  Google Scholar 

  18. Benmoussa M, Moldenhauer KA, Hamaker BR (2007) Rice amylopectin fine structure variability affects starch digestion properties. J Agric Food Chem 55:1475–1479

    Article  CAS  Google Scholar 

  19. Zhu LJ, Liu QQ, Wilson JD, Gu MH, Shi YC (2011) Digestibility and physicochemical properties of rice (oryza sativa l.) flours and starches differing in amylose content. Carbohydr Polym 86:1751–1759

    Article  CAS  Google Scholar 

  20. Vilaplana F, Gilbert RG (2010) Characterization of branched polysaccharides using multiple-detection size separation techniques. J Sep Sci 33:3537–3554

    Article  CAS  Google Scholar 

  21. Wu AC, Li E, Gilbert RG (2014) Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydr Polym 114:36–42

    Article  CAS  Google Scholar 

  22. O'Shea MG, Samuel MS, Konik CM, Morell MK (1998) Fluorophore-assisted carbohydrate electrophoresis (face) of oligosaccharides: efficiency of labeling and high-resolution separation. Carbohydr Res 307:1–12

    Article  CAS  Google Scholar 

  23. Cave RA, Seabrook SA, Gidley MJ, Gilbert RG (2009) Characterization of starch by size-exclusion chromatography: the limitations imposed by shear scission. Biomacromolecules 10:2245–2253

    Article  CAS  Google Scholar 

  24. Jones RG, Kahovec J, Stepto R, Wilks ES, Hess M, Kitayama T, Metanomski WV (2009) Compendium of polymer terminology and nomenclature. Iupac recommendations 2008. Royal Soc Chem, Cambridge

    Book  Google Scholar 

  25. Kostanski LK, Keller DM, Hamielec AE (2004) Size-exclusion chromatography-a review of calibration methodologies. J Biochem Biophys Methods 58:159–186

    Article  CAS  Google Scholar 

  26. Syahariza ZA, Li E, Hasjim J (2010) Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohydr Polym 82:14–20

    Article  CAS  Google Scholar 

  27. Hasjim J, Jane JL (2009) Production of resistant starch by extrusion cooking of acid-modified normal-maize starch. J Food Sci 74:C556–C562

    Article  CAS  Google Scholar 

  28. Bello-Perez LA, Roger P, Baud B, Colonna P (1998) Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography. J Cereal Sci 27:267–278

    Article  CAS  Google Scholar 

  29. You SG, Lim ST (2000) Molecular characterization of corn starch using an aqueous hpsec-malls-ri system under various dissolution and analytical conditions. Cereal Chem 77:303–308

    Article  CAS  Google Scholar 

  30. Kim HS, Huber KC, Higley JS (2006) Alkaline dissolution of starch facilitated by microwave heating for analysis by size-exclusion chromatography. J Agric Food Chem 54:9664–9669

    Article  CAS  Google Scholar 

  31. Schmitz S, Dona AC, Castignolles P, Gilbert RG, Gaborieau M (2009) Quantification of the extent of starch dissolution in dimethylsulfoxide by 1h nmr spectroscopy. Macromol Biosci 9:506–514

    Article  CAS  Google Scholar 

  32. van Berkel KY, Russell GT, Gilbert RG (2005) Molecular weight distributions and chain-stopping events in the free-radical polymerization of methyl methacrylate. Macromolecules 38:3214–3224

    Article  Google Scholar 

  33. Schnoll-Bitai I, Vega J, Mader C (2007) Estimation of the band broadening parameters in single detection size-exclusion chromatography: a comparative study of various column combinations. Anal Chim Acta 604:9–17

    Article  Google Scholar 

  34. Gruendling T, Guilhaus M, Barner-Kowollik C (2008) Quantitative lc-ms of polymers: determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing. Anal Chem 80:6915–6927

    Article  CAS  Google Scholar 

  35. Gruendling T, Guilhaus M, Barner-Kowollik C (2009) Fast and accurate determination of absolute individual molecular weight distributions from mixtures of polymers via size exclusion chromatography-electrospray ionization mass spectrometry. Macromolecules 42:6366–6374

    Article  CAS  Google Scholar 

  36. Castro JV, van Berkel KY, Russell GT, Gilbert RG (2005) General solution to the band-broadening problem in polymer molecular weight distributions. Aust J Chem 58:178–181

    Article  CAS  Google Scholar 

  37. Konkolewicz D, Taylor JW II, Castignolles P, Gray-Weale AA, Gilbert RG (2007) Towards a more general solution to the band-broadening problem in size separation of polymers. Macromolecules 40:3477–3487

    Article  CAS  Google Scholar 

  38. Gray-Weale A, Gilbert RG (2009) General description of the structure of branched polymers. J Polymer Sci Polymer Chem 47:3914–3930

    Article  CAS  Google Scholar 

  39. Clay PA, Gilbert RG (1995) Molecular-weight distributions in free-radical polymerizations.1. Model development and implications for data interpretation. Macromolecules 28:552–569

    Article  CAS  Google Scholar 

  40. Witt T, Gidley MJ, Gilbert RG (2010) Starch digestion mechanistic information from the time evolution of molecular size distributions. J Agric Food Chem 58:8444–8452

    Article  CAS  Google Scholar 

  41. Castro JV, Dumas C, Chiou H, Fitzgerald MA, Gilbert RG (2005) Mechanistic information from analysis of molecular weight distributions of starch. Biomacromolecules 6:2248–2259

    Article  CAS  Google Scholar 

  42. Wu AC, Witt T, Gilbert RG (2013) Characterization methods for starch-based materials: state of the art and perspectives. Aust J Chem 66:1550–1563

    Article  CAS  Google Scholar 

  43. O'Shea MG, Morell MK (1996) High resolution slab gel electrophoresis of 8-amino-1,3, 6-pyrenetrisulfonic acid (apts) tagged oligosaccharides using a DNA sequencer. Electrophoresis 17:681–686

    Article  CAS  Google Scholar 

  44. Gray-Weale A, Cave RA, Gilbert RG (2009) Extracting physically useful information from multiple-detection size-separation data for starch. Biomacromolecules 10:2708–2713

    Article  CAS  Google Scholar 

  45. Ao ZH, Simsek S, Zhang GY, Venkatachalam M, Reuhs BL, Hamaker BR (2007) Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. J Agric Food Chem 55:4540–4547

    Article  CAS  Google Scholar 

  46. Li C, Wu AC, Go RM, Malouf J, Turner MS, Malde AK, Mark AE, Gilbert RG (2015) The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions. PLoS One 10:e0125507

    Article  Google Scholar 

  47. Wu AC, Morell MK, Gilbert RG (2013) A parameterized model of amylopectin synthesis provides key insights into the synthesis of granular starch. PLoS One 8:e65768

    Article  CAS  Google Scholar 

  48. Wu AC, Gilbert RG (2010) Molecular weight distributions of starch branches reveal genetic constraints on biosynthesis. Biomacromolecules 11:3539–3547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Robert G. Gilbert greatly appreciates the support of the Chinese Government’s 1000 Talents program of the State Foreign Experts Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, C., Li, H., Gilbert, R.G. (2019). Characterizing Starch Molecular Structure of Rice. In: Sreenivasulu, N. (eds) Rice Grain Quality. Methods in Molecular Biology, vol 1892. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8914-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8914-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8912-6

  • Online ISBN: 978-1-4939-8914-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics