Skip to main content

Structural and Biochemical Analyses of the Core Components of the Hippo Pathway

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1893))

Abstract

The Hippo pathway controls organ size and maintains tissue homeostasis through a central MST–LATS kinase cascade. When Hippo signaling is on, activated MST1/2 partner with SAV1 to phosphorylate and activate the LATS1/2–MOB1 complexes, which in turn phosphorylate and inactivate YAP/TAZ transcription co-activators. This process halts the expression of Hippo-responsive genes, thereby inhibiting cell proliferation and promoting apoptosis. Our studies have shown that two core adaptor proteins MOB1 and SAV1 use distinctive mechanisms to enhance Hippo signaling. MOB1 promotes MST-dependent LATS activation through dynamic scaffolding and allosteric regulation. SAV1 promotes MST activation by antagonizing the PP2A phosphatase activity. Here we describe the detailed methods for the purification and crystallization of the MST2–SAV1 and pMOB1–LATS1 complexes, for assaying the SAV1-dependent inhibition of PP2A, and for analyzing LATS1 kinase activation using in vitro reconstitution.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Harvey K, Tapon N (2007) The Salvador-Warts-Hippo pathway—an emerging tumour-suppressor network. Nat Rev Cancer 7(3):182–191

    Article  CAS  PubMed  Google Scholar 

  2. Pan D (2010) The hippo signaling pathway in development and cancer. Dev Cell 19(4):491–505. https://doi.org/10.1016/j.devcel.2010.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson R, Halder G (2014) The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 13(1):63–79. https://doi.org/10.1038/nrd4161

    Article  CAS  PubMed  Google Scholar 

  4. Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163(4):811–828. https://doi.org/10.1016/j.cell.2015.10.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Badouel C, Garg A, McNeill H (2009) Herding Hippos: regulating growth in flies and man. Curr Opin Cell Biol 21(6):837–843

    Article  CAS  PubMed  Google Scholar 

  6. Staley BK, Irvine KD (2012) Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 241(1):3–15. https://doi.org/10.1002/dvdy.22723

    Article  CAS  PubMed  Google Scholar 

  7. Barry ER, Camargo FD (2013) The Hippo superhighway: signaling crossroads converging on the Hippo/Yap pathway in stem cells and development. Curr Opin Cell Biol 25(2):247–253. https://doi.org/10.1016/j.ceb.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  8. Zhao B, Lei QY, Guan KL (2008) The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol 20(6):638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harvey KF, Zhang X, Thomas DM (2013) The Hippo pathway and human cancer. Nat Rev Cancer 13(4):246–257. https://doi.org/10.1038/nrc3458

    Article  CAS  PubMed  Google Scholar 

  10. Halder G, Johnson RL (2011) Hippo signaling: growth control and beyond. Development 138(1):9–22. https://doi.org/10.1242/dev.045500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371. https://doi.org/10.1101/gad.210773.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chan EH, Nousiainen M, Chalamalasetty RB, Schafer A, Nigg EA, Sillje HH (2005) The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24(12):2076–2086. https://doi.org/10.1038/sj.onc.1208445

    Article  CAS  PubMed  Google Scholar 

  13. Praskova M, Xia F, Avruch J (2008) MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18(5):311–321. https://doi.org/10.1016/j.cub.2008.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hansen CG, Moroishi T, Guan KL (2015) YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol 25(9):499–513. https://doi.org/10.1016/j.tcb.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang J, Wu S, Barrera J, Matthews K, Pan D (2005) The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122(3):421–434

    Article  CAS  PubMed  Google Scholar 

  16. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo X (2010) Snapshots of a hybrid transcription factor in the Hippo pathway. Protein Cell 1(9):811–819. https://doi.org/10.1007/s13238-010-0105-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22(14):1962–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR (2012) Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 23(7):770–784. https://doi.org/10.1016/j.semcdb.2012.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin Y, Dong L, Lu Y, Wu W, Hao Q, Zhou Z, Jiang J, Zhao Y, Zhang L (2012) Dimerization and cytoplasmic localization regulate Hippo kinase signaling activity in organ size control. J Biol Chem 287(8):5784–5796. https://doi.org/10.1074/jbc.M111.310334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ni L, Li S, Yu J, Min J, Brautigam CA, Tomchick DR, Pan D, Luo X (2013) Structural basis for autoactivation of human Mst2 kinase and its regulation by RASSF5. Structure 21(10):1757–1768. https://doi.org/10.1016/j.str.2013.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiong S, Couzens AL, Kean MJ, Mao DY, Guettler S, Kurinov I, Gingras AC, Sicheri F (2017) Regulation of protein interactions by Mps One binder (MOB1) phosphorylation. Mol Cell Proteomics 16(6):1111–1125. https://doi.org/10.1074/mcp.M117.068130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Couzens AL, Xiong S, Knight JDR, Mao DY, Guettler S, Picaud S, Kurinov I, Filippakopoulos P, Sicheri F, Gingras AC (2017) MOB1 mediated phospho-recognition in the core mammalian hippo pathway. Mol Cell Proteomics 16(6):1098–1110. https://doi.org/10.1074/mcp.M116.065490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cairns L, Tran T, Kavran JM (2017) Structural insights into the regulation of hippo signaling. ACS Chem Biol 12:601. https://doi.org/10.1021/acschembio.6b01058

    Article  CAS  PubMed  Google Scholar 

  25. Bae SJ, Ni L, Osinski A, Tomchick DR, Brautigam CA, Luo X (2017) SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. eLife 6:e30278. https://doi.org/10.7554/eLife.30278

    Article  PubMed  PubMed Central  Google Scholar 

  26. Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30(1):1–17. https://doi.org/10.1101/gad.274027.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoa L, Kulaberoglu Y, Gundogdu R, Cook D, Mavis M, Gomez M, Gomez V, Hergovich A (2016) The characterisation of LATS2 kinase regulation in Hippo-YAP signalling. Cell Signal 28(5):488–497. https://doi.org/10.1016/j.cellsig.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  28. Hergovich A (2016) The roles of NDR protein kinases in hippo signalling. Genes 7(5):21. https://doi.org/10.3390/genes7050021

    Article  CAS  PubMed Central  Google Scholar 

  29. Ni L, Zheng Y, Hara M, Pan D, Luo X (2015) Structural basis for Mob1-dependent activation of the core Mst-Lats kinase cascade in Hippo signaling. Genes Dev 29(13):1416–1431. https://doi.org/10.1101/gad.264929.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hergovich A (2012) Mammalian Hippo signalling: a kinase network regulated by protein-protein interactions. Biochem Soc Trans 40(1):124–128. https://doi.org/10.1042/BST20110619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hergovich A (2013) Regulation and functions of mammalian LATS/NDR kinases: looking beyond canonical Hippo signalling. Cell Biosci 3(1):32. https://doi.org/10.1186/2045-3701-3-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim SY, Tachioka Y, Mori T, Hakoshima T (2016) Structural basis for autoinhibition and its relief of MOB1 in the Hippo pathway. Sci Rep 6:28488. https://doi.org/10.1038/srep28488

    Article  PubMed  PubMed Central  Google Scholar 

  33. Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J (2004) Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J 381(Pt 2):453–462. https://doi.org/10.1042/BJ20040025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho US, Xu W (2007) Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature 445(7123):53–57. https://doi.org/10.1038/nature05351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (GM107415 to XL) and the Robert A. Welch Foundation (I-1932 to XL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelian Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ni, L., Luo, X. (2019). Structural and Biochemical Analyses of the Core Components of the Hippo Pathway. In: Hergovich, A. (eds) The Hippo Pathway. Methods in Molecular Biology, vol 1893. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8910-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8910-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8909-6

  • Online ISBN: 978-1-4939-8910-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics