Skip to main content

High-Throughput, Biosensor-Based Approach to Examine Bone Morphogenetic Protein (BMP)–Receptor Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1891))

Abstract

Binding of a BMP to its cognate cell surface receptors is the initiating step in the BMP signaling cascade. Thus, knowing which BMP–receptor complexes form is vital for understanding the physiological activities of a particular BMP. Here, we describe a surface plasmon resonance (SPR)-based, high-throughput approach that allows fast identification and evaluation of BMP–receptor complexes. Briefly, the extracellular, BMP-binding domains of receptors are produced as human IgG1-Fc-fusion proteins. The Fc moiety enables simple capture of the Fc-receptor-fusion protein on the sensor chip, supports a highly reproducible, uniform approach of surface regeneration, and ensures full activity of the receptor moiety. BMPs are injected over the captured receptors at one concentration (approximately 60–100 nM), permitting stratification of high-affinity, medium-affinity, and low-affinity binders. Using this concentration range, equilibrium dissociation constants for high-affinity and medium-affinity binders can be estimated with good accuracy and with great precision from the single injection binding curves.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23(4):609–620. https://doi.org/10.1016/j.cellsig.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  2. Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44(3):253–265

    CAS  PubMed  Google Scholar 

  3. Werner S, Alzheimer C (2006) Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev 17(3):157–171. https://doi.org/10.1016/j.cytogfr.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  4. Wakefield LM, Hill CS (2013) Beyond TGFbeta: roles of other TGFbeta superfamily members in cancer. Nat Rev Cancer 13(5):328–341. https://doi.org/10.1038/nrc3500

    Article  CAS  PubMed  Google Scholar 

  5. Massague J (2008) TGFbeta in cancer. Cell 134(2):215–230. https://doi.org/10.1016/j.cell.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  CAS  Google Scholar 

  7. Weiss A, Attisano L (2013) The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2(1):47–63. https://doi.org/10.1002/wdev.86

    Article  CAS  PubMed  Google Scholar 

  8. Massague J (2012) TGFbeta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630. https://doi.org/10.1038/nrm3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136(22):3699–3714. https://doi.org/10.1242/dev.030338

    Article  CAS  PubMed  Google Scholar 

  10. Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY (2015) Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 45(2):97–105. https://doi.org/10.1080/10408347.2014.881250

    Article  CAS  PubMed  Google Scholar 

  11. Townson SA, Martinez-Hackert E, Greppi C, Lowden P, Sako D, Liu J, Ucran JA, Liharska K, Underwood KW, Seehra J, Kumar R, Grinberg AV (2012) Specificity and structure of a high affinity activin receptor-like kinase 1 (ALK1) signaling complex. J Biol Chem 287(33):27313–27325. https://doi.org/10.1074/jbc.M112.377960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aykul S, Martinez-Hackert E (2016) Transforming growth factor-beta family ligands can function as antagonists by competing for type II receptor binding. J Biol Chem 291(20):10792–10804. https://doi.org/10.1074/jbc.M115.713487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sako D, Grinberg AV, Liu J, Davies MV, Castonguay R, Maniatis S, Andreucci AJ, Pobre EG, Tomkinson KN, Monnell TE, Ucran JA, Martinez-Hackert E, Pearsall RS, Underwood KW, Seehra J, Kumar R (2010) Characterization of the ligand binding functionality of the extracellular domain of activin receptor type IIb. J Biol Chem 285(27):21037–21048. https://doi.org/10.1074/jbc.M110.114959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aykul S, Ni W, Mutatu W, Martinez-Hackert E (2015) Human cerberus prevents nodal-receptor binding, inhibits nodal signaling, and suppresses nodal-mediated phenotypes. PLoS One 10(1):e0114954. https://doi.org/10.1371/journal.pone.0114954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aykul S, Martinez-Hackert E (2016) New ligand binding function of human cerberus and role of proteolytic processing in regulating ligand-receptor interactions and antagonist activity. J Mol Biol 428(3):590–602. https://doi.org/10.1016/j.jmb.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  16. Aykul S, Martinez-Hackert E (2016) Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal Biochem 508:97–103. https://doi.org/10.1016/j.ab.2016.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, Sako D, Pearsall RS, Underwood KW, Seehra J, Kumar R, Grinberg AV (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286(34):30034–30046. https://doi.org/10.1074/jbc.M111.260133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weber D, Kotzsch A, Nickel J, Harth S, Seher A, Mueller U, Sebald W, Mueller TD (2007) A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor. BMC Struct Biol 7:6. https://doi.org/10.1186/1472-6807-7-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Martinez-Hackert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aykul, S., Martinez-Hackert, E. (2019). High-Throughput, Biosensor-Based Approach to Examine Bone Morphogenetic Protein (BMP)–Receptor Interactions. In: Rogers, M. (eds) Bone Morphogenetic Proteins. Methods in Molecular Biology, vol 1891. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8904-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8904-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8903-4

  • Online ISBN: 978-1-4939-8904-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics