Skip to main content

Methodological Approach for the Evaluation of FOXO as a Positive Regulator of Antioxidant Genes

  • Protocol
  • First Online:
FOXO Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1890))

Abstract

All four FOXO isoforms have been shown to respond to changes in the cellular redox status of the cell, and regulate the expression of target genes that in turn can modulate the cellular oxidative status. However, the mechanisms involved are still controversial. It is clear though that redox regulation of FOXO factors occurs at different levels. The proteins themselves are redox-sensitive and their capacity to bind their target sites seems to be at least partially dependent on their oxidative status. Importantly, several of the cofactors that are known to regulate FOXO transcriptional activity are also sensitive to changes in the cellular redox status, in particular the deacetylase SirT1 is activated in response to reduced levels of reducing equivalents (increased NAD+/NADH+ ratio) and the coactivator PGC-1α is induced in response to increased cellular oxidative stress. Furthermore, nuclear localization of FOXO factors is also regulated by proteins that, like AKT, are themselves regulated directly or indirectly by the cellular levels of reactive oxygen and nitrogen species. In this technical review, we aim to update the current status of our knowledge of how to handle redox-regulated FOXO factor research in order to better understand FOXO biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prieto I, Monsalve M (2017) ROS homeostasis, a key determinant in liver ischemic-preconditioning. Redox Biol 12:1020–1025. https://doi.org/10.1016/j.redox.2017.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmidt-Strassburger U, Schips TG, Maier HJ, Kloiber K, Mannella F, Braunstein KE, Holzmann K, Ushmorov A, Liebau S, Boeckers TM, Wirth T (2012) Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors. FASEB J 26(12):4990–5001. https://doi.org/10.1096/fj.12-208587

    Article  CAS  PubMed  Google Scholar 

  3. Czymai T, Viemann D, Sticht C, Molema G, Goebeler M, Schmidt M (2010) FOXO3 modulates endothelial gene expression and function by classical and alternative mechanisms. J Biol Chem 285(14):10163–10178. https://doi.org/10.1074/jbc.M109.056663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu H, Fellows A, Foote K, Yang Z, Figg N, Littlewood T, Bennett M (2018) FOXO3a (forkhead transcription factor O subfamily member 3a) links vascular smooth muscle cell apoptosis, matrix breakdown, atherosclerosis, and vascular remodeling through a novel pathway involving MMP13 (matrix metalloproteinase 13). Arterioscler Thromb Vasc Biol 38(3):555–565. https://doi.org/10.1161/ATVBAHA.117.310502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Storz P (2011) Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal 14(4):593–605. https://doi.org/10.1089/ars.2010.3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Skurk C, Maatz H, Kim HS, Yang J, Abid MR, Aird WC, Walsh K (2004) The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279(2):1513–1525. https://doi.org/10.1074/jbc.M304736200

    Article  CAS  PubMed  Google Scholar 

  7. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  Google Scholar 

  8. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95(5):2509–2514

    Article  CAS  Google Scholar 

  9. Olmos Y, Valle I, Borniquel S, Tierrez A, Soria E, Lamas S, Monsalve M (2009) Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes. J Biol Chem 284(21):14476–14484. https://doi.org/10.1074/jbc.M807397200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borniquel S, Garcia-Quintans N, Valle I, Olmos Y, Wild B, Martinez-Granero F, Soria E, Lamas S, Monsalve M (2010) Inactivation of Foxo3a and subsequent downregulation of PGC-1 alpha mediate nitric oxide-induced endothelial cell migration. Mol Cell Biol 30(16):4035–4044. https://doi.org/10.1128/MCB.00175-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Olmos Y, Sanchez-Gomez FJ, Wild B, Garcia-Quintans N, Cabezudo S, Lamas S, Monsalve M (2013) SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1alpha complex. Antioxid Redox Signal 19(13):1507–1521. https://doi.org/10.1089/ars.2012.4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papanicolaou KN, Izumiya Y, Walsh K (2008) Forkhead transcription factors and cardiovascular biology. Circ Res 102(1):16–31. https://doi.org/10.1161/CIRCRESAHA.107.164186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aguer C, Gambarotta D, Mailloux RJ, Moffat C, Dent R, McPherson R, Harper ME (2011) Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS One 6(12):e28536. https://doi.org/10.1371/journal.pone.0028536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lages YM, Nascimento JM, Lemos GA, Galina A, Castilho LR, Rehen SK (2015) Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells. Peer J 3:e1486. https://doi.org/10.7717/peerj.1486

    Article  CAS  PubMed  Google Scholar 

  15. Tiede LM, Cook EA, Morsey B, Fox HS (2011) Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins. Cell Death Dis 2:e246. https://doi.org/10.1038/cddis.2011.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Spanish “Ministerio de Economía Industria y Competitividad” (MINEICO) and FEDER funds [Grant numbers SAF2015-63904-R, SAF2015-71521-REDC] and from the EU H2020 framework programm Grant MSCA-ITN-2016-721236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Monsalve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Monsalve, M., Prieto, I., de Bem, A.F., Olmos, Y. (2019). Methodological Approach for the Evaluation of FOXO as a Positive Regulator of Antioxidant Genes. In: Link, W. (eds) FOXO Transcription Factors. Methods in Molecular Biology, vol 1890. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8900-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8900-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8899-0

  • Online ISBN: 978-1-4939-8900-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics