Skip to main content

Using ChIP-Based Approaches to Characterize FOXO Recruitment to its Target Promoters

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1890))

Abstract

Chromatin immunoprecipitation (ChIP) coupled to quantitative real-time PCR (ChIP-qPCR) or Next-Generation Sequencing (ChIP-seq) enables us to study the dynamics of chromatin recruitment of transcription factors (TFs). The popular model system Caenorhabditis elegans has provided us with fundamental understanding of the role of Insulin/IGF-1-like signaling (IIS) in metabolism and aging. The FOXO TF DAF-16 is the major output of the pathway that regulates most of the phenotypes associated with the IIS pathway. Here, we describe a ChIP protocol to study FOXO recruitment dynamics in whole C. elegans extracts. We discuss detailed practical procedures, including optimization, growth, harvesting, formaldehyde fixation, sonication of worms, TF immunoprecipitation for further downstream processing using qPCR as well as NGS for the analysis of FOXO-bound DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walhout AJ (2006) Unraveling transcription regulatory networks by protein-DNA and protein-protein interaction mapping. Genome Res 16(12):1445–1454

    Article  CAS  Google Scholar 

  2. Collas P, Dahl JA (2008) Chop it, ChIP it, check it: the current status of chromatin immunoprecipitation. Front Biosci 13(17):929–943

    Article  CAS  Google Scholar 

  3. Das PM, Ramachandran K, vanWert J et al (2004) Chromatin immunoprecipitation assay. BioTechniques 37(6):961–969

    Article  CAS  Google Scholar 

  4. Gade P, Kalvakolanu DV (2012) Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity. Methods Mol Biol 809:85–104

    Article  CAS  Google Scholar 

  5. Hoffman EA, Frey BL, Smith LM et al (2015) Formaldehyde crosslinking: a tool for the study of chromatin complexes. J Biol Chem 290(44):26404–26411

    Article  CAS  Google Scholar 

  6. Sambrook J, Russell DW (2006) Fragmentation of DNA by sonication. CSH Protoc 2006(4):pdb.prot4538

    PubMed  Google Scholar 

  7. Duband-Goulet I (2016) Lamin ChIP from chromatin prepared by micrococcal nuclease digestion. Methods Mol Biol 1411:325–339

    Article  CAS  Google Scholar 

  8. Carey MF, Peterson CL, Smale ST (2009) Chromatin immunoprecipitation (ChIP). Cold Spring Harb Protoc 2009(9):pdb.prot5279

    PubMed  Google Scholar 

  9. Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc 2006(1):pdb.prot4455

    PubMed  Google Scholar 

  10. Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45(1):87–100

    Article  CAS  Google Scholar 

  11. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120(4):449–460

    Article  CAS  Google Scholar 

  12. Mukhopadhyay A, Oh SW, Tissenbaum HA (2006) Worming pathways to and from DAF-16/FOXO. Exp Gerontol 41(10):928–934

    Article  CAS  Google Scholar 

  13. Lin K, Hsin H, Libina N et al (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28(2):139–145

    Article  CAS  Google Scholar 

  14. Grishok A, Sharp PA (2005) Negative regulation of nuclear divisions in Caenorhabditis elegans by retinoblastoma and RNA interference-related genes. Proc Natl Acad Sci U S A 102(48):17360–17365

    Article  CAS  Google Scholar 

  15. Whetstine JR, Ceron J, Ladd B et al (2005) Regulation of tissue-specific and extracellular matrix-related genes by a class I histone deacetylase. Mol Cell 18(4):483–490

    Article  CAS  Google Scholar 

  16. Lee MH, Hook B, Lamont LB et al (2006) LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J 25(1):88–96

    Article  CAS  Google Scholar 

  17. Ercan S, Giresi PG, Whittle CM et al (2007) X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nat Genet 39(3):403–408

    Article  CAS  Google Scholar 

  18. Riedel CG, Dowen RH, Lourenco GF et al (2013) DAF-16/FOXO employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity. Nat Cell Biol 15(5):491

    Article  CAS  Google Scholar 

  19. Oh SW, Mukhopadhyay A, Dixit BL et al (2006) Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 38(2):251–257

    Article  Google Scholar 

  20. Mukhopadhyay A, Deplancke B, Walhout AJ et al (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc 3(4):698–709

    Article  CAS  Google Scholar 

  21. Kumar N, Jain V, Singh A et al (2015) Genome-wide endogenous DAF-16/FOXO recruitment dynamics during lowered insulin signalling in C. elegans. Oncotarget 6(39):41418–41433

    Article  Google Scholar 

  22. Mikeska T, Dobrovic A (2009) Validation of a primer optimisation matrix to improve the performance of reverse transcription–quantitative real-time PCR assays. BMC Res Notes 2(1):112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, N., Mukhopadhyay, A. (2019). Using ChIP-Based Approaches to Characterize FOXO Recruitment to its Target Promoters. In: Link, W. (eds) FOXO Transcription Factors. Methods in Molecular Biology, vol 1890. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8900-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8900-3_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8899-0

  • Online ISBN: 978-1-4939-8900-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics