Advertisement

Myogenesis pp 127-168 | Cite as

Transcriptomic Profiling During Myogenesis

  • Alicja Majewska
  • Tomasz Domoradzki
  • Katarzyna Grzelkowska-Kowalczyk
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1889)

Abstract

Microarray-based transcriptomic profiling enables simultaneous measurement of expression of multiple genes from one biological sample. Here we describe a detailed protocol, which serves to examine global gene expression using whole genome oligonucleotide microarrays. We also provide examples of bioinformatics tools, which are helpful in analyses and interpretation of microarray data, and propose further biological assays, to warrant conclusions drawn from transcriptomic signature.

Key words

Microarrays RNA isolation and validation cRNA labeling and hybridization Gene ontology classification Biological association networks 

References

  1. 1.
    Oberthuer A, Juraeva D, Li L et al (2010) Comparison of performance of one-color and two-color gene expression analyses in predicting clinical endpoints of neuroblastoma patients. Pharmacogenomics J 10:258–266.  https://doi.org/10.1038/tpj.2010.53CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Slonim DK, Yanai I (2009) Getting started in gene expression microarray analysis. PLoS Comput Biol 5:e1000543.  https://doi.org/10.1371/journal.pcbi.1000543CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mi H, Huang X, Muruganujan A et al (2017) PANTHER version 11: expanded annotation data from gene ontology and Reactome pathways and data analysis tool enhancements. Nucleic Acids Res 45:D183–D189.  https://doi.org/10.1093/nar/gkw1138CrossRefGoogle Scholar
  4. 4.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative nalysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  5. 5.
    Huber W, Carey VJ, Gentleman R et al (2015) Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 12(2):115–121.  https://doi.org/10.1038/nmeth.3252CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grabiec K, Gajewska M, Milewska M et al (2014) The influence of high glucose and high insulin on mechanisms controlling cell cycle progression and arrest in mouse C2C12 myoblasts: the comparison with IGF-I effect. J Endocrinol Investig 37:233–245CrossRefGoogle Scholar
  7. 7.
    Dedieu S, Mazcres G, Cottin P et al (2002) Involvement of myogenic regulator factors during fusion in the cell line C2C12. Int J Dev Biol 46:235–241PubMedGoogle Scholar
  8. 8.
    Chomczynski P, Sacchi N (2006) The single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1:581–585CrossRefGoogle Scholar
  9. 9.
    Wieteska-Skrzeczyńska W, Grzelkowska-Kowalczyk K, Tokarska J et al (2011) Growth factor and cytokine interactions in myogenesis. Part I. The effect of TNF-α and IFN-γ on IGF-I-dependent differentiation in mouse C2C12 myogenic cells. Pol J Vet Sci 14:417–424PubMedGoogle Scholar
  10. 10.
  11. 11.
    QIAGEN Newsletter March 15, 2010Google Scholar
  12. 12.
    Cicinnati VR, Shen Q, Sotiropoulos GC et al (2008) Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR. BMC Cancer 8:350.  https://doi.org/10.1186/1471-2407-8-350CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B (Methodological) 57:289–300Google Scholar
  14. 14.
    Stafford P (2008) Methods in microarray normalization. CRC Press Print ISBN: 978-1-4200-5278-7Google Scholar
  15. 15.
    Morey JS, Ryan JC, Van Dolah FM (2006) Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 8:175–193CrossRefGoogle Scholar
  16. 16.
    Tarca AL, Romero R, Draghici S (2006) Analysis of microarray experiments of gene expression profiling. Am J Obstet Gynecol 195:373–388CrossRefGoogle Scholar
  17. 17.
    Grabiec K, Majewska A, Wicik Z et al (2016) The effect of palmitate supplementation on gene expression profile in proliferating myoblasts. Cell Biol Toxicol 32:185–198.  https://doi.org/10.1007/s10565-016-9324-2CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mi H, Muruganujan A, Casagrande JT et al (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566.  https://doi.org/10.1038/nprot.2013.092CrossRefGoogle Scholar
  19. 19.
    Grzelkowska-Kowalczyk K, Wicik Z, Majewska A et al (2015) Transcriptional regulation of important cellular processes in skeletal myogenesis through interferon-γ. J Interf Cytokine Res 35:89–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alicja Majewska
    • 1
  • Tomasz Domoradzki
    • 1
  • Katarzyna Grzelkowska-Kowalczyk
    • 1
  1. 1.Department of Physiological Sciences, Faculty of Veterinary MedicineWarsaw University of Life Sciences (SGGW)WarsawPoland

Personalised recommendations