Advertisement

Myogenesis pp 17-24 | Cite as

Electrical Pulse Stimulation of Primary Human Skeletal Muscle Cells

  • Nataša NikolićEmail author
  • Vigdis Aas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1889)

Abstract

Electrical pulse stimulation (EPS) is an in vitro method of inducing contractions in cultured skeletal muscle cells of human and animal origin. Motor neuron activation of muscle fibers can be replaced by applying EPS on differentiated skeletal muscle cells (myotubes) in culture (Thelen et al. Biochemical J 321:845–848, 1997, Fujita et al. Exp Cell Res 313:1853–1865, 2007).

Here we describe two protocols for EPS of human myotubes in 6-well plates: acute, high-frequency (single bipolar pulses of 2 ms, 100 Hz for 200 ms every fifth second for 5–60 min, 10–30 V) and chronic, low-frequency (single bipolar pulses of 2 ms, 1 Hz 10–30 V for 48 h) at the end of a 7 days long differentiation.

Key words

Skeletal muscle Myotubes Contractions Electrical pulse stimulations 

References

  1. 1.
    Aas V, Bakke SS, Feng YZ, Kase ET, Jensen J, Bajpeyi S, Thoresen GH, Rustan AC (2013) Are cultured human myotubes far from home? Cell Tissue Res.  https://doi.org/10.1007/s00441-013-1655-1CrossRefGoogle Scholar
  2. 2.
    Nikolic N, Gorgens SW, Thoresen GH, Aas V, Eckel J, Eckardt K (2017) Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations. Acta Physiol 220(3):310–331.  https://doi.org/10.1111/apha.12830CrossRefGoogle Scholar
  3. 3.
    Askanas V, Kwan H, Alvarez RB, Engel WK, Kobayashi T, Martinuzzi A, Hawkins EF (1987) De novo neuromuscular junction formation on human muscle fibres cultured in monolayer and innervated by foetal rat spinal cord: ultrastructural and ultrastructural--cytochemical studies. J Neurocytol 16(4):523–537CrossRefGoogle Scholar
  4. 4.
    Thelen MH, Simonides WS, van Hardeveld C (1997) Electrical stimulation of C2C12 myotubes induces contractions and represses thyroid-hormone-dependent transcription of the fast-type sarcoplasmic-reticulum Ca2+-ATPase gene. Biochem J 321(Pt 3):845–848CrossRefGoogle Scholar
  5. 5.
    Fujita H, Nedachi T, Kanzaki M (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 313(9):1853–1865.  https://doi.org/10.1016/j.yexcr.2007.03.002 S0014-4827(07)00106-1 [pii]CrossRefPubMedGoogle Scholar
  6. 6.
    Nikolic N, Bakke SS, Kase ET, Rudberg I, Flo Halle I, Rustan AC, Thoresen GH, Aas V (2012) Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLoS One 7(3):e33203.  https://doi.org/10.1371/journal.pone.0033203CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Feng YZ, Nikolic N, Bakke SS, Kase ET, Guderud K, Hjelmesaeth J, Aas V, Rustan AC, Thoresen GH (2015) Myotubes from lean and severely obese subjects with and without type 2 diabetes respond differently to an in vitro model of exercise. Am J Physiol Cell Physiol 308(7):C548–C556.  https://doi.org/10.1152/ajpcell.00314.2014CrossRefPubMedGoogle Scholar
  8. 8.
    Nedachi T, Fujita H, Kanzaki M (2008) Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am J Physiol Endocrinol Metab 295(5):E1191–E1204.  https://doi.org/10.1152/ajpendo.90280.2008 90280.2008 [pii]CrossRefPubMedGoogle Scholar
  9. 9.
    Lambernd S, Taube A, Schober A, Platzbecker B, Gorgens SW, Schlich R, Jeruschke K, Weiss J, Eckardt K, Eckel J (2012) Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways. Diabetologia 55(4):1128–1139.  https://doi.org/10.1007/s00125-012-2454-zCrossRefPubMedGoogle Scholar
  10. 10.
    Raschke S, Eckardt K, Bjorklund Holven K, Jensen J, Eckel J (2013) Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS One 8(4):e62008.  https://doi.org/10.1371/journal.pone.0062008CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Danilov K, Sidorenko S, Milovanova K, Klimanova E, Kapilevich LV, Orlov SN (2017) Electrical pulse stimulation decreases electrochemical Na+ and K+ gradients in C2C12 myotubes. Biochem Biophys Res Commun 493(2):875–878.  https://doi.org/10.1016/j.bbrc.2017.09.133CrossRefPubMedGoogle Scholar
  12. 12.
    Tarum J, Folkesson M, Atherton PJ, Kadi F (2017) Electrical pulse stimulation: an in vitro exercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study. Exp Physiol.  https://doi.org/10.1113/EP086581CrossRefGoogle Scholar
  13. 13.
    Nedachi T, Hatakeyama H, Kono T, Sato M, Kanzaki M (2009) Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes. Am J Physiol Endocrinol Metab 297(4):E866–E878.  https://doi.org/10.1152/ajpendo.00104.2009CrossRefPubMedGoogle Scholar
  14. 14.
    Aas V, Torbla S, Andersen MH, Jensen J, Rustan AC (2002) Electrical stimulation improves insulin responses in a human skeletal muscle cell model of hyperglycemia. Ann N Y Acad Sci 967:506–515CrossRefGoogle Scholar
  15. 15.
    Henry RR, Abrams L, Nikoulina S, Ciaraldi TP (1995) Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects. Comparison using human skeletal muscle cell cultures. Diabetes 44(8):936–946CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Biosciences, School of PharmacyUniversity of OsloOsloNorway
  2. 2.Department of Life Sciences and Health, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway

Personalised recommendations