Skip to main content

Preparation and Culturing of Atlantic Salmon Muscle Cells for In Vitro Studies

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1889))

Abstract

This chapter outlines methods for isolating myosatellites from Atlantic salmon (Salmo salar), how to keep them in culture and differentiate them into mature myocytes. The protocol further describes how to trans-differentiate the myocytes into osteoblasts (bone cells).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnston IA (2001) Genetic and environmental determinants of muscle growth patterns. Fish Physiol 18:141–186

    Article  Google Scholar 

  2. Stickland NC (1983) Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri). J Anat 137(Pt 2):323–333

    PubMed  PubMed Central  Google Scholar 

  3. Johnston IA (1999) Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177(1–4):99–115

    Article  Google Scholar 

  4. Koumans J, Akster H, Dulos G, Osse J (1990) Myosatellite cells of Cyprinus carpio (Teleostei) in vitro: isolation, recognition and differentiation. Cell Tissue Res 261(1):173–181

    Article  Google Scholar 

  5. Johnston IA, McLay HA (1997) Temperature and family effects on muscle cellularity at hatch and first feeding in Atlantic salmon (Salmo salar L.). Can J Zool 75(1):64–74

    Article  Google Scholar 

  6. Rowlerson A (2001) Cellular mechanisms of post-embyonic muscle growth in aquaculture species. Fish Physiol 18:102–140

    Google Scholar 

  7. Stickland N, White R, Mescall P, Crook A, Thorpe J (1988) The effect of temperature on myogenesis in embryonic development of the Atlantic salmon (Salmo salar L.). Anat Embryol 178(3):253–257

    Article  CAS  Google Scholar 

  8. Johnston IA, McLay HA, Abercromby M, Robins D (2000) Phenotypic plasticity of early myogenesis and satellite cell numbers in Atlantic salmon spawning in upland and lowland tributaries of a river system. J Exp Biol 203(Pt 17):2539–2552

    CAS  PubMed  Google Scholar 

  9. Watabe S (2001) Myogenic regulatory factors. Fish Physiol 18:19–41

    Article  Google Scholar 

  10. Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17(3):203–209

    Article  CAS  Google Scholar 

  11. Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, Bass JJ, Sharma M (2002) The myostatin gene is a downstream target gene of basic helix-loop- helix transcription factor MyoD. Mol Cell Biol 22(20):7066–7082

    Article  CAS  Google Scholar 

  12. Salerno MS, Thomas M, Forbes D, Watson T, Kambadur R, Sharma M (2004) Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am J Physiol Cell Physiol 287(4):C1031–C1040

    Article  CAS  Google Scholar 

  13. Østbye TK, Galloway TF, Nielsen C, Gabestad I, Bardal T, Andersen Ø (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. FEBS J 268(20):5249–5257

    Google Scholar 

  14. Østbye T-KK, Wetten OF, Tooming-Klunderud A, Jakobsen KS, Yafe A, Etzioni S, Moen T, Andersen Ø (2007) Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and-2. Gene 403(1):159–169

    Article  Google Scholar 

  15. Matschak T, Stickland N (1995) The growth of Atlantic salmon (Salmo salar L.) myosatellite cells in culture at two different temperatures. Experientia 51(3):260–266

    Article  CAS  Google Scholar 

  16. Vegusdal A, Østbye TK, Tran TN, Gjoen T, Ruyter B (2004) Beta-oxidation, esterification, and secretion of radiolabeled fatty acids in cultivated Atlantic salmon skeletal muscle cells. Lipids 39(7):649–658

    Article  CAS  Google Scholar 

  17. Østbye TK, Ruyter B, Standal IB, Stien LH, Bahuaud D, Dessen JE, Latif MS, Fyhn-Terjesen B, Rørvik KA, Mørkøre T (2018) Functional amino acids stimulate muscle development and improve fillet texture of Atlantic salmon. Aquac Nutr 24(1):14–26

    Article  Google Scholar 

  18. Mizuno H (2009) Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sch 76(2):56–66

    Article  Google Scholar 

  19. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  Google Scholar 

  20. Pittenger M, Mosca J, McIntosh K (2000) Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. In: Lymphoid organogenesis. Springer, New York, pp 3–11

    Chapter  Google Scholar 

  21. Ytteborg E, Vegusdal A, Witten PE, Berge GM, Takle H, Østbye TK, Ruyter B (2010) Atlantic salmon (Salmo salar) muscle precursor cells differentiate into osteoblasts in vitro: polyunsaturated fatty acids and hyperthermia influence gene expression and differentiation. BBA-Mol Cell Biol L 1801(2):127–137

    Article  CAS  Google Scholar 

  22. Helland S, Denstadli V, Witten PE, Hjelde K, Storebakken T, Skrede A, Åsgård T, Baeverfjord G (2006) Hyper dense vertebrae and mineral content in Atlantic salmon (Salmo salar L.) fed diets with graded levels of phytic acid. Aquaculture 261(2):603–614

    Article  CAS  Google Scholar 

  23. Yasui N, Sato M, Ochi T, Kimura T, Kawahata H, Kitamura Y, Nomura S (1997) Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg 79(5):824–830

    Article  CAS  Google Scholar 

  24. Choi IH, Chung CY, Cho T-J, Yoo WJ (2002) Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci 17(4):435

    Article  Google Scholar 

  25. Ytteborg E, Todorcevic M, Krasnov A, Takle H, Kristiansen IØ, Ruyter B (2015) Precursor cells from Atlantic salmon (Salmo salar) visceral fat holds the plasticity to differentiate into the osteogenic lineage. Biol Open 4(7):783–791

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tone-Kari K. Oestbye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oestbye, TK.K., Ytteborg, E. (2019). Preparation and Culturing of Atlantic Salmon Muscle Cells for In Vitro Studies. In: Rønning, S. (eds) Myogenesis. Methods in Molecular Biology, vol 1889. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8897-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8897-6_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8896-9

  • Online ISBN: 978-1-4939-8897-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics