Advertisement

Myogenesis pp 319-330 | Cite as

Preparation and Culturing of Atlantic Salmon Muscle Cells for In Vitro Studies

  • Tone-Kari K. OestbyeEmail author
  • Elisabeth Ytteborg
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1889)

Abstract

This chapter outlines methods for isolating myosatellites from Atlantic salmon (Salmo salar), how to keep them in culture and differentiate them into mature myocytes. The protocol further describes how to trans-differentiate the myocytes into osteoblasts (bone cells).

Key words

In vitro Atlantic salmon Muscle cell Differentiation Myosatellite Trans-differentiation 

References

  1. 1.
    Johnston IA (2001) Genetic and environmental determinants of muscle growth patterns. Fish Physiol 18:141–186CrossRefGoogle Scholar
  2. 2.
    Stickland NC (1983) Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri). J Anat 137(Pt 2):323–333PubMedPubMedCentralGoogle Scholar
  3. 3.
    Johnston IA (1999) Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177(1–4):99–115CrossRefGoogle Scholar
  4. 4.
    Koumans J, Akster H, Dulos G, Osse J (1990) Myosatellite cells of Cyprinus carpio (Teleostei) in vitro: isolation, recognition and differentiation. Cell Tissue Res 261(1):173–181CrossRefGoogle Scholar
  5. 5.
    Johnston IA, McLay HA (1997) Temperature and family effects on muscle cellularity at hatch and first feeding in Atlantic salmon (Salmo salar L.). Can J Zool 75(1):64–74CrossRefGoogle Scholar
  6. 6.
    Rowlerson A (2001) Cellular mechanisms of post-embyonic muscle growth in aquaculture species. Fish Physiol 18:102–140Google Scholar
  7. 7.
    Stickland N, White R, Mescall P, Crook A, Thorpe J (1988) The effect of temperature on myogenesis in embryonic development of the Atlantic salmon (Salmo salar L.). Anat Embryol 178(3):253–257CrossRefGoogle Scholar
  8. 8.
    Johnston IA, McLay HA, Abercromby M, Robins D (2000) Phenotypic plasticity of early myogenesis and satellite cell numbers in Atlantic salmon spawning in upland and lowland tributaries of a river system. J Exp Biol 203(Pt 17):2539–2552PubMedGoogle Scholar
  9. 9.
    Watabe S (2001) Myogenic regulatory factors. Fish Physiol 18:19–41CrossRefGoogle Scholar
  10. 10.
    Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17(3):203–209CrossRefGoogle Scholar
  11. 11.
    Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, Bass JJ, Sharma M (2002) The myostatin gene is a downstream target gene of basic helix-loop- helix transcription factor MyoD. Mol Cell Biol 22(20):7066–7082CrossRefGoogle Scholar
  12. 12.
    Salerno MS, Thomas M, Forbes D, Watson T, Kambadur R, Sharma M (2004) Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am J Physiol Cell Physiol 287(4):C1031–C1040CrossRefGoogle Scholar
  13. 13.
    Østbye TK, Galloway TF, Nielsen C, Gabestad I, Bardal T, Andersen Ø (2001) The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. FEBS J 268(20):5249–5257Google Scholar
  14. 14.
    Østbye T-KK, Wetten OF, Tooming-Klunderud A, Jakobsen KS, Yafe A, Etzioni S, Moen T, Andersen Ø (2007) Myostatin (MSTN) gene duplications in Atlantic salmon (Salmo salar): evidence for different selective pressure on teleost MSTN-1 and-2. Gene 403(1):159–169CrossRefGoogle Scholar
  15. 15.
    Matschak T, Stickland N (1995) The growth of Atlantic salmon (Salmo salar L.) myosatellite cells in culture at two different temperatures. Experientia 51(3):260–266CrossRefGoogle Scholar
  16. 16.
    Vegusdal A, Østbye TK, Tran TN, Gjoen T, Ruyter B (2004) Beta-oxidation, esterification, and secretion of radiolabeled fatty acids in cultivated Atlantic salmon skeletal muscle cells. Lipids 39(7):649–658CrossRefGoogle Scholar
  17. 17.
    Østbye TK, Ruyter B, Standal IB, Stien LH, Bahuaud D, Dessen JE, Latif MS, Fyhn-Terjesen B, Rørvik KA, Mørkøre T (2018) Functional amino acids stimulate muscle development and improve fillet texture of Atlantic salmon. Aquac Nutr 24(1):14–26CrossRefGoogle Scholar
  18. 18.
    Mizuno H (2009) Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sch 76(2):56–66CrossRefGoogle Scholar
  19. 19.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefGoogle Scholar
  20. 20.
    Pittenger M, Mosca J, McIntosh K (2000) Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. In: Lymphoid organogenesis. Springer, New York, pp 3–11CrossRefGoogle Scholar
  21. 21.
    Ytteborg E, Vegusdal A, Witten PE, Berge GM, Takle H, Østbye TK, Ruyter B (2010) Atlantic salmon (Salmo salar) muscle precursor cells differentiate into osteoblasts in vitro: polyunsaturated fatty acids and hyperthermia influence gene expression and differentiation. BBA-Mol Cell Biol L 1801(2):127–137CrossRefGoogle Scholar
  22. 22.
    Helland S, Denstadli V, Witten PE, Hjelde K, Storebakken T, Skrede A, Åsgård T, Baeverfjord G (2006) Hyper dense vertebrae and mineral content in Atlantic salmon (Salmo salar L.) fed diets with graded levels of phytic acid. Aquaculture 261(2):603–614CrossRefGoogle Scholar
  23. 23.
    Yasui N, Sato M, Ochi T, Kimura T, Kawahata H, Kitamura Y, Nomura S (1997) Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg 79(5):824–830CrossRefGoogle Scholar
  24. 24.
    Choi IH, Chung CY, Cho T-J, Yoo WJ (2002) Angiogenesis and mineralization during distraction osteogenesis. J Korean Med Sci 17(4):435CrossRefGoogle Scholar
  25. 25.
    Ytteborg E, Todorcevic M, Krasnov A, Takle H, Kristiansen IØ, Ruyter B (2015) Precursor cells from Atlantic salmon (Salmo salar) visceral fat holds the plasticity to differentiate into the osteogenic lineage. Biol Open 4(7):783–791CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nofima ASÅsNorway

Personalised recommendations