Advertisement

Myogenesis pp 267-281 | Cite as

Myogenesis in Drosophila melanogaster: Dissection of Distinct Muscle Types for Molecular Analysis

  • Anton L. Bryantsev
  • Lizzet Castillo
  • Sandy T. Oas
  • Maria B. Chechenova
  • Tracy E. Dohn
  • TyAnna L. LovatoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1889)

Abstract

Drosophila is a useful model organism for studying the molecular signatures that define specific muscle types during myogenesis. It possesses significant genetic conservation with humans for muscle disease causing genes and a lack of redundancy that simplifies functional analysis. Traditional molecular methods can be utilized to understand muscle developmental processes such as Western blots, in situ hybridizations, RT-PCR and RNAseq, to name a few. However, one challenge for these molecular methods is the ability to dissect different muscle types. In this protocol we describe some useful techniques for extracting muscles from the pupal and adult stages of development using flight and jump muscles as an example.

Key words

Drosophila Indirect flight muscles Tergal depressor of trochanter Muscular dystrophy Myopathy Myogenesis 

Notes

Acknowledgments

Research at UNM is supported by grants from NIH/NIGMS: COBRE Center for Evolutionary and Theoretical Immunology (P30GM110907), the NIH (GM061738 and GM124498) and NSF (1518073) to R.M. Cripps.

References

  1. 1.
    Bönnemann CG, Laing NG (2004) Myopathies resulting from mutations in sarcomeric proteins. Curr Opin Neurol 17(5):529–537CrossRefGoogle Scholar
  2. 2.
    D’Amico A, Bertini E (2008) Congenital myopathies. Curr Neurol Neurosci Rep 8:73–79CrossRefGoogle Scholar
  3. 3.
    Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531CrossRefGoogle Scholar
  4. 4.
    Ariano MA, Armstrong RB, Edgerton VR (1973) Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem 21(1):51–55CrossRefGoogle Scholar
  5. 5.
    Smith RS, Ovalle WK Jr (1973) Varieties of fast and slow extrafusal muscle fibres in amphibian hind limb muscles. J Anat 116(Pt 1):1–24PubMedPubMedCentralGoogle Scholar
  6. 6.
    Gleeson TT, Putnam RW, Bennett AF (1980) Histochemical, enzymatic, and contractile properties of skeletal muscle fibers in the lizard Dipsosaurus dorsalis. J Exp Zool 214(3):293–302CrossRefGoogle Scholar
  7. 7.
    Thorstensson A, Grimby G, Karlsson J (1976) Force-velocity relations and fiber composition in human knee extensor muscles. J Appl Physiol 40(1):12–16CrossRefGoogle Scholar
  8. 8.
    Harridge SD et al (1996) Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch 432(5):913–920CrossRefGoogle Scholar
  9. 9.
    Hoppeler H et al (1973) The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch 344(3):217–232CrossRefGoogle Scholar
  10. 10.
    Herbison GJ, Jaweed MM, Ditunno JF (1982) Muscle fiber types. Arch Phys Med Rehabil 63(5):227–230PubMedGoogle Scholar
  11. 11.
    Rossi AC et al (2010) Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol 588(Pt 2):353–364CrossRefGoogle Scholar
  12. 12.
    Korfage JA, Van Eijden TM (2003) Myosin heavy-chain isoform composition of human single jaw-muscle fibers. J Dent Res 82(6):481–485CrossRefGoogle Scholar
  13. 13.
    Costill DL et al (1976) Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40(2):149–154CrossRefGoogle Scholar
  14. 14.
    Agudelo LZ et al (2014) Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159(1):33–45CrossRefGoogle Scholar
  15. 15.
    Butler-Browne GS, Whalen RG (1984) Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle. Dev Biol 102(2):324–334CrossRefGoogle Scholar
  16. 16.
    Ciciliot S et al (2013) Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol 45(10):2191–2199CrossRefGoogle Scholar
  17. 17.
    Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50:11–16PubMedGoogle Scholar
  18. 18.
    Oberbach A et al (2006) Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes Care 29(4):895–900CrossRefGoogle Scholar
  19. 19.
    Tanner CJ et al (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 282(6):E1191–E1196CrossRefGoogle Scholar
  20. 20.
    Bryantsev AL et al (2012) Differential requirements for myocyte enhancer factor-2 during adult myogenesis in Drosophila. Dev Biol 361(2):191–207CrossRefGoogle Scholar
  21. 21.
    Oas ST, Bryantsev AL, Cripps RM (2014) Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila. J Cell Biol 206(7):895–908CrossRefGoogle Scholar
  22. 22.
    Chechenova MB et al (2017) Functional redundancy and non-redundancy between two troponin C isoforms in Drosophila adult muscles. Mol Biol Cell 28:760CrossRefGoogle Scholar
  23. 23.
    Chechenova MB, Bryantsev AL, Cripps RM (2013) The Drosophila Z-disc protein Z(210) is an adult muscle isoform of Zasp52, which is required for normal myofibril organization in indirect flight muscles. J Biol Chem 288(6):3718–3726CrossRefGoogle Scholar
  24. 24.
    Bryantsev AL et al (2012) Extradenticle and homothorax control adult muscle fiber identity in Drosophila. Dev Cell 23(3):664–673CrossRefGoogle Scholar
  25. 25.
    Cripps RM, Sparrow JC (1992) Polymorphism in a Drosophila indirect flight muscle-specific tropomyosin isozyme does not affect flight ability. Biochem Genet 30:159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anton L. Bryantsev
    • 1
  • Lizzet Castillo
    • 2
  • Sandy T. Oas
    • 2
  • Maria B. Chechenova
    • 1
  • Tracy E. Dohn
    • 1
    • 2
  • TyAnna L. Lovato
    • 2
    Email author
  1. 1.Department of Molecular and Cellular BiologyKennesaw State UniversityKennesawUSA
  2. 2.Department of BiologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations