Myogenesis pp 229-243 | Cite as

A siRNA Mediated Screen During C2C12 Myogenesis

  • Alexis Parenté
  • Luce Pèrié
  • Laetitia Magnol
  • Khaled Bouhouche
  • Véronique BlanquetEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1889)


Myogenesis is a multistep process taking place during pre- and postnatal stages for muscle formation, growth, and regeneration. It is a highly regulated process involving many molecular factors which act during myoblast proliferation and differentiation. To provide new insights into the molecular mechanisms and interactions behind the regulation of these different steps, RNA interference is an efficient methodology to implement. We developed a high-throughput siRNA screen in C2C12 murine myoblast cells for identification of genes relevant to signaling pathways controlling muscle growth. The proposed protocol is based on (1) the analyses of a maximum number of cells/myotubes to detect and quantify both clear and subtle phenotypes during proliferation/fusion cells and (2) the use of two cellular fluorescent markers, DAPI and myosin, decorating nuclei and myotubes respectively. Four phenotypic criteria were quantitatively assessed: cellular density, myotubes quantity, fusion index, and size and morphology of myotubes.

Key words

siRNA Functional screen Myogenesis C2C12 Quantitative-imaging analysis Proliferation Differentiation Immunostaining 


  1. 1.
    Buckingham M, Rigby PWJ (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238. Scholar
  2. 2.
    Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595. Scholar
  3. 3.
    Pownall ME, Gustafsson MK, Emerson CP (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783. Scholar
  4. 4.
    Rudnicki MA, Schnegelsberg PN, Stead RH et al (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359CrossRefGoogle Scholar
  5. 5.
    Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132:2685–2695. Scholar
  6. 6.
    Biressi S, Tagliafico E, Lamorte G et al (2007) Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol 304:633–651. Scholar
  7. 7.
    Stockdale FE (1992) Myogenic cell lineages. Dev Biol 154:284–298CrossRefGoogle Scholar
  8. 8.
    Horst D, Ustanina S, Sergi C et al (2006) Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int J Dev Biol 50:47–54. Scholar
  9. 9.
    Fougerousse F, Edom-Vovard F, Merkulova T et al (2001) The muscle-specific enolase is an early marker of human myogenesis. J Muscle Res Cell Motil 22:535–544CrossRefGoogle Scholar
  10. 10.
    Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265. Scholar
  11. 11.
    Chargé SBP, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238. Scholar
  12. 12.
    Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953. Scholar
  13. 13.
    Thomas M, Langley B, Berry C et al (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243. Scholar
  14. 14.
    Pèrié L, Parenté A, Brun C et al (2016) Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor. Biochem Biophys Rep 6:39–46. Scholar
  15. 15.
    Périè L, Parenté A, Baraige F et al (2017) Alterations in adiposity and glucose homeostasis in adult Gasp-1 overexpressing mice. CPB 44:1896–1911. Scholar
  16. 16.
    Agrawal N, Dasaradhi PVN, Mohmmed A et al (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685CrossRefGoogle Scholar
  17. 17.
    Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99. Scholar
  18. 18.
    Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. Scholar
  19. 19.
    Heo I, Kim VN (2009) Regulating the regulators: posttranslational modifications of RNA silencing factors. Cell 139:28–31. Scholar
  20. 20.
    Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112. Scholar
  21. 21.
    Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200CrossRefGoogle Scholar
  22. 22.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. Scholar
  23. 23.
    Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296. Scholar
  24. 24.
    Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197. Scholar
  25. 25.
    Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32. Scholar
  26. 26.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139. Scholar
  27. 27.
    Mohr SE, Smith JA, Shamu CE et al (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15:591–600. Scholar
  28. 28.
    Crotty MM, Henderson J, Ward PR et al (2015) Analysis of social networks supporting the self-management of type 2 diabetes for people with mental illness. BMC Health Serv Res 15:257. Scholar
  29. 29.
    Khanjyan MV, Yang J, Kayali R et al (2013) A high-content, high-throughput siRNA screen identifies cyclin D2 as a potent regulator of muscle progenitor cell fusion and a target to enhance muscle regeneration. Hum Mol Genet 22:3283–3295. Scholar
  30. 30.
    Echeverri CJ, Beachy PA, Baum B et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779. Scholar
  31. 31.
    Rajan S, Chu Pham Dang H, Djambazian H et al (2012) Analysis of early C2C12 myogenesis identifies stably and differentially expressed transcriptional regulators whose knock-down inhibits myoblast differentiation. Physiol Genomics 44:183–197. Scholar
  32. 32.
    Ge Y, Waldemer RJ, Nalluri R et al (2013) RNAi screen reveals potentially novel roles of cytokines in myoblast differentiation. PLoS One 8. Scholar
  33. 33.
    Burattini S, Ferri P, Battistelli M et al (2004) C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur J Histochem 48:223–233PubMedGoogle Scholar
  34. 34.
    Alwan R, Bruel A-L, Da Silva A et al (2017) An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation. Exp Cell Res 359:145–153. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexis Parenté
    • 1
  • Luce Pèrié
    • 1
  • Laetitia Magnol
    • 1
  • Khaled Bouhouche
    • 1
  • Véronique Blanquet
    • 1
    Email author
  1. 1.INRA, PEIRENE EA7500, USC1061 GAMAA, Université de LimogesLimogesFrance

Personalised recommendations