Skip to main content

A siRNA Mediated Screen During C2C12 Myogenesis

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1889))

Abstract

Myogenesis is a multistep process taking place during pre- and postnatal stages for muscle formation, growth, and regeneration. It is a highly regulated process involving many molecular factors which act during myoblast proliferation and differentiation. To provide new insights into the molecular mechanisms and interactions behind the regulation of these different steps, RNA interference is an efficient methodology to implement. We developed a high-throughput siRNA screen in C2C12 murine myoblast cells for identification of genes relevant to signaling pathways controlling muscle growth. The proposed protocol is based on (1) the analyses of a maximum number of cells/myotubes to detect and quantify both clear and subtle phenotypes during proliferation/fusion cells and (2) the use of two cellular fluorescent markers, DAPI and myosin, decorating nuclei and myotubes respectively. Four phenotypic criteria were quantitatively assessed: cellular density, myotubes quantity, fusion index, and size and morphology of myotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckingham M, Rigby PWJ (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238. https://doi.org/10.1016/j.devcel.2013.12.020

    Article  CAS  Google Scholar 

  2. Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595. https://doi.org/10.1016/j.semcdb.2005.07.006

    Article  CAS  Google Scholar 

  3. Pownall ME, Gustafsson MK, Emerson CP (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783. https://doi.org/10.1146/annurev.cellbio.18.012502.105758

    Article  CAS  Google Scholar 

  4. Rudnicki MA, Schnegelsberg PN, Stead RH et al (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359

    Article  CAS  Google Scholar 

  5. Tapscott SJ (2005) The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132:2685–2695. https://doi.org/10.1242/dev.01874

    Article  CAS  PubMed  Google Scholar 

  6. Biressi S, Tagliafico E, Lamorte G et al (2007) Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol 304:633–651. https://doi.org/10.1016/j.ydbio.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  7. Stockdale FE (1992) Myogenic cell lineages. Dev Biol 154:284–298

    Article  CAS  Google Scholar 

  8. Horst D, Ustanina S, Sergi C et al (2006) Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int J Dev Biol 50:47–54. https://doi.org/10.1387/ijdb.052111dh

    Article  CAS  PubMed  Google Scholar 

  9. Fougerousse F, Edom-Vovard F, Merkulova T et al (2001) The muscle-specific enolase is an early marker of human myogenesis. J Muscle Res Cell Motil 22:535–544

    Article  CAS  Google Scholar 

  10. Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265. https://doi.org/10.1152/physrev.2000.80.3.1215

    Article  CAS  PubMed  Google Scholar 

  11. Chargé SBP, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238. https://doi.org/10.1152/physrev.00019.2003

    Article  PubMed  Google Scholar 

  12. Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953. https://doi.org/10.1038/nature03594

    Article  CAS  Google Scholar 

  13. Thomas M, Langley B, Berry C et al (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243. https://doi.org/10.1074/jbc.M004356200

    Article  CAS  PubMed  Google Scholar 

  14. Pèrié L, Parenté A, Brun C et al (2016) Enhancement of C2C12 myoblast proliferation and differentiation by GASP-2, a myostatin inhibitor. Biochem Biophys Rep 6:39–46. https://doi.org/10.1016/j.bbrep.2016.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Périè L, Parenté A, Baraige F et al (2017) Alterations in adiposity and glucose homeostasis in adult Gasp-1 overexpressing mice. CPB 44:1896–1911. https://doi.org/10.1159/000485878

    Article  CAS  Google Scholar 

  16. Agrawal N, Dasaradhi PVN, Mohmmed A et al (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685

    Article  CAS  Google Scholar 

  17. Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99. https://doi.org/10.1007/s00294-006-0078-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. https://doi.org/10.1038/35888

    Article  CAS  Google Scholar 

  19. Heo I, Kim VN (2009) Regulating the regulators: posttranslational modifications of RNA silencing factors. Cell 139:28–31. https://doi.org/10.1016/j.cell.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  20. Castel SE, Martienssen RA (2013) RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14:100–112. https://doi.org/10.1038/nrg3355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  Google Scholar 

  22. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. https://doi.org/10.1038/35053110

    Article  CAS  Google Scholar 

  23. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296. https://doi.org/10.1038/35005107

    Article  CAS  PubMed  Google Scholar 

  24. Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197. https://doi.org/10.1016/j.molcel.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  25. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32. https://doi.org/10.1038/nrm2321

    Article  CAS  PubMed  Google Scholar 

  26. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139. https://doi.org/10.1038/nrm2632

    Article  CAS  PubMed  Google Scholar 

  27. Mohr SE, Smith JA, Shamu CE et al (2014) RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 15:591–600. https://doi.org/10.1038/nrm3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Crotty MM, Henderson J, Ward PR et al (2015) Analysis of social networks supporting the self-management of type 2 diabetes for people with mental illness. BMC Health Serv Res 15:257. https://doi.org/10.1186/s12913-015-0897-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khanjyan MV, Yang J, Kayali R et al (2013) A high-content, high-throughput siRNA screen identifies cyclin D2 as a potent regulator of muscle progenitor cell fusion and a target to enhance muscle regeneration. Hum Mol Genet 22:3283–3295. https://doi.org/10.1093/hmg/ddt184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Echeverri CJ, Beachy PA, Baum B et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3:777–779. https://doi.org/10.1038/nmeth1006-777

    Article  CAS  PubMed  Google Scholar 

  31. Rajan S, Chu Pham Dang H, Djambazian H et al (2012) Analysis of early C2C12 myogenesis identifies stably and differentially expressed transcriptional regulators whose knock-down inhibits myoblast differentiation. Physiol Genomics 44:183–197. https://doi.org/10.1152/physiolgenomics.00093.2011

    Article  CAS  PubMed  Google Scholar 

  32. Ge Y, Waldemer RJ, Nalluri R et al (2013) RNAi screen reveals potentially novel roles of cytokines in myoblast differentiation. PLoS One 8. https://doi.org/10.1371/journal.pone.0068068

    Article  CAS  Google Scholar 

  33. Burattini S, Ferri P, Battistelli M et al (2004) C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur J Histochem 48:223–233

    CAS  PubMed  Google Scholar 

  34. Alwan R, Bruel A-L, Da Silva A et al (2017) An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation. Exp Cell Res 359:145–153. https://doi.org/10.1016/j.yexcr.2017.07.037

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Blanquet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Parenté, A., Pèrié, L., Magnol, L., Bouhouche, K., Blanquet, V. (2019). A siRNA Mediated Screen During C2C12 Myogenesis. In: Rønning, S. (eds) Myogenesis. Methods in Molecular Biology, vol 1889. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8897-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8897-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8896-9

  • Online ISBN: 978-1-4939-8897-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics