Skip to main content

Imaging Artificial Membranes Using High-Speed Atomic Force Microscopy

  • Protocol
  • First Online:
Atomic Force Microscopy

Abstract

Supported lipid bilayers represent a very attractive way to mimic biological membranes, especially to investigate molecular mechanisms associated with the lateral segregation of membrane components. Observation of these model membranes with high-speed atomic force microscopy (HS-AFM) allows the capture of both topography and dynamics of membrane components, with a spatial resolution in the nanometer range and image capture time of less than 1 s. In this context, we have developed new protocols adapted for HS-AFM to form supported lipid bilayers on small mica disks using the vesicle fusion or Langmuir-Blodgett methods. In this chapter we describe in detail the protocols to fabricate supported artificial bilayers as well as the main guidelines for HS-AFM imaging of such samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahya N (2006) Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy. Chem Phys Lipids 141:158–168

    Article  CAS  Google Scholar 

  2. Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    Article  CAS  Google Scholar 

  3. Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47:7986–7998

    Article  CAS  Google Scholar 

  4. El Kirat K, Morandat S, Dufrêne Y (2010) Nanoscale analysis of supported lipid bilayers using atomic force microscopy. Biochim Biophys Acta 1798:750–765

    Article  CAS  Google Scholar 

  5. Garcia-Manyes S, Sanz F (2010) Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective. Biochim Biophys Acta 1798:741–749

    Google Scholar 

  6. Goksu EI, Vanegas JM, Blanchette CD, Lin WC, Longo ML (2009) AFM for structure and dynamics of biomembranes. Biochim Biophys Acta 1788:254–266

    Google Scholar 

  7. Johnston I, Johnston LJ (2006) Ceramide promotes restructuring of model raft membranes. Langmuir 22:11284–11289

    Article  CAS  Google Scholar 

  8. Seantier B, Giocondi M, Le Grimellec C, Milhiet P (2008) Probing supporting model and native membranes using afm. Curr Opin Colloid Interface Sci 13:326–337

    Article  CAS  Google Scholar 

  9. Giocondi M-C, Seantier B, Dosset P, Milhiet P-E, Le Grimellec C (2008) Characterizing the interactions between GPI-anchored alkaline phosphatases and membrane domains by AFM. Pflüg Arch Eur J Physiol 456:179–188

    Article  CAS  Google Scholar 

  10. Levy D, Milhiet P-E (2013) Imaging of transmembrane proteins directly incorporated within supported lipid bilayers using atomic force microscopy. Methods Mol Biol 950:343–357

    PubMed  CAS  Google Scholar 

  11. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane. EMBO J 23:3206–3215

    Article  CAS  Google Scholar 

  12. Yu C, Groves JT (2010) Engineering supported membranes for cell biology. Med Biol Eng Comput 48:955–963

    Article  Google Scholar 

  13. Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114:3120–3188

    Article  CAS  Google Scholar 

  14. Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M et al (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch 456:211–225

    Article  CAS  Google Scholar 

  15. Giocondi MC, Yamamoto D, Lesniewska E, Milhiet PE, Ando T, Le Grimellec C (2010) Surface topography of membrane domains. Biochim Biophys Acta 1798:703–718

    Google Scholar 

  16. Yilmaz N, Kobayashi T (2015) Visualization of lipid membrane reorganization induced by a pore-forming toxin using high-speed atomic force microscopy. ACS Nano 9:7960–7967

    Article  CAS  Google Scholar 

  17. Takahashi H, Miyagi A, Redondo-Morata L, Scheuring S (2016) Temperature-controlled high-speed AFM: real-time observation of ripple phase transitions. Small 12:6106–6113

    Article  CAS  Google Scholar 

  18. McConnell HM, Watts TH, Weis RM, Brian AA (1986) Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta 864:95–106

    Article  CAS  Google Scholar 

  19. Almeida PF, Vaz WL, Thompson TE (1992) Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry 31:7198–7210

    Article  CAS  Google Scholar 

  20. Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 7:1193–1206

    Article  CAS  Google Scholar 

  21. Milhiet PE, Domec C, Giocondi MC, Van Mau N, Heitz F, Le Grimellec C (2001) Domain formation in models of the renal brush border membrane outer leaflet. Biophys J 81:547–555

    Article  CAS  Google Scholar 

  22. Giocondi MC, Vié V, Lesniewska E, Milhiet PE, Zinke-Allmang M, Le Grimellec C (2001) Phase topology and growth of single domains in lipid bilayers. Langmuir 17:1653–1659

    Article  CAS  Google Scholar 

  23. Needham D, McIntosh TJ, Evans E (1988) Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry 27:4668–4673

    Article  CAS  Google Scholar 

  24. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  Google Scholar 

  25. Nakanishi M, Hirayama E, Kim J (2001) Characterisation of myogenic cell membrane: II. Dynamic changes in membrane lipids during the differentiation of mouse C2 myoblast cells. Cell Biol Int 25:971–979

    Article  CAS  Google Scholar 

  26. Yip CM, Elton EA, Darabie AA, Morrison MR, McLaurin J (2001) Cholesterol, a modulator of membrane-associated Abeta-fibrillogenesis and neurotoxicity. J Mol Biol 311:723–734

    Article  CAS  Google Scholar 

  27. Chochina SV, Avdulov NA, Igbavboa U, Cleary JP, O’Hare EO, Wood WG (2001) Amyloid beta-peptide1-40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 42:1292–1297

    PubMed  CAS  Google Scholar 

  28. Fritzsching KJ, Kim J, Holland GP (2013) Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR. Biochim Biophys Acta 1828:1889–1898

    Google Scholar 

  29. Rangl M, Rima L, Klement J, Miyagi A, Keller S, Scheuring S (2017) Real-time visualization of phospholipid degradation by outer membrane phospholipase a using high-speed atomic force microscopy. J Mol Biol 429:977–986

    Article  CAS  Google Scholar 

  30. Picas L, Carretero-Genevrier A, Montero MT, Vazquez-Ibar JL, Seantier B, Milhiet PE et al (2010) Preferential insertion of lactose permease in phospholipid domains: AFM observations. Biochim Biophys Acta 1798:1014–1019

    Google Scholar 

Download references

Acknowledgments

The research has been supported by CNRS (PEM and EL), INSERM (PEM), Institut Carnot (EL), and by the ANR program (ANR-11-nano-009-04, ANR-08-NANO-010-03, ANR- 08-PCVI-0003-02, the EpiGenMed Labex ANR-10-LABX-12-01 and the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05). We are grateful to our collaborators involved in the project, P. Dosset, J. Kokavecz, and C. Le Grimellec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Emmanuel Milhiet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nasrallah, H. et al. (2019). Imaging Artificial Membranes Using High-Speed Atomic Force Microscopy. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics